A primary objective of Magnet is in making artificial intelligence more acceptable to society by solving some ethical issues of Machine Learning (ML) and on empowering end users of artificial intelligence. From a scientific perspective we focus on privacy, fairness, (data) sobriety. Our approaches are typically based on the common theme of leveraging the relationships between data and between learning objectives. We study graph-based machine learning methods which are the common foundations of the research group and we rely on methods coming from statistical and computational learning theory, graph theory, representation learning, (distributed) optimization and statistics.
We are mainly interested in provable properties for machine learning algorithms but we also consider more empirical work. Our application domains cover health, mobility, social sciences, voice technologies.
Membres
Jonas Julie
Dalle Aurore
Dans l'actualité

Retour sur la première édition du hackAtech Inria – Lille 2020

Reconnaissance vocale et respect de la vie privée : la voix Inria se fait entendre

inHEART, la 3D pour améliorer et fiabiliser les interventions cardiaques
Dopamine, une série dopée à l’expertise
Observation du cerveau par imagerie fonctionnelle

Prédire l'âge du cerveau grâce à un modèle informatique

Coup d'oeil sous le capot de l'intelligence artificielle avec le projet HyAIAI

Les sciences du numérique optimisent les prévisions des éruptions solaires

Les Journées Scientifiques Inria 2018
