L'apprentissage profond pour les nouvelles modalités d'images

Date:
Mis à jour le 01/02/2021
Pour soutenir les travaux sur l'intelligence artificielle en France, le gouvernement vient de financer 40 chaires de recherche et d’enseignement. Parmi les lauréats figure Christine Guillemot, directrice de recherche au centre Inria Rennes – Bretagne Atlantique. Son projet vise à permettre aux réseaux de neurones de traiter efficacement les images à grande dimensionnalité générées par les nouveaux capteurs plénoptiques et les caméras omnidirectionnelles.
représentation d'une ville en photo 360°
Image par Evgeni Tcherkasski de Pixabay

 

Un clic pour estomper quelques rides. Un autre pour amincir la silhouette. Un troisième pour ragaillardir les couleurs. Et le tour est joué. En quelques années, l'intelligence artificielle (IA) s'est invitée dans le traitement d'image avec les résultats fulgurants que l'on sait. Mais les fameux algorithmes à réseaux de neurones qui permettent cette prouesse se heurtent à un problème : ils peinent à absorber la dimension époustouflante des nouvelles images 3D issues des caméras omnidirectionnelles ou bien encore celles produites par les capteurs plénoptiques. Ces capteurs dits « à champ de lumière » ne se contentent plus de retranscrire l'image dans son plan 2D. Ils intègrent toutes les dimensions de la scène, y compris son volume, ce qui permet de choisir un point de focus parmi des milliers, de modifier la profondeur de champ ou encore de changer de cadrage.

Christine Guillemot est responsable de Sirocco, une équipe spécialisée dans le traitement et la représentation du signal, en particulier dans le domaine de l'image. La chaire en IA s'appelle DeepCIM, un acronyme pour : Deep learning for Computational Imaging with emerging image Modalities.

La chaire en intelligence artificielle attribuée à Christine Guillemot ambitionne de développer des réseaux de neurones capables justement de passer à cette échelle. Elle s'inscrit dans le prolongement d'un projet CLIM (Computational Light Field IMaging) sur ces nouvelles modalités d'images sélectionné en 2016 par le Conseil européen de la recherche (ERC).

La taille des données impacte les algorithmes

« Durant ce projet ERC, nous avons déjà commencé à investir dans le "deep learning". Ces méthodes d'apprentissage profond marchent très bien, mais on ne peut pas les transposer immédiatement à l'imagerie omnidirectionnelle ou l'imagerie plénoptique. D'abord parce que la taille des données impacte aussi celle des algorithmes utilisés pour l'apprentissage. Déjà pour de la 2D, les réseaux de neurones doivent incorporer des millions et des millions de paramètres. Ce qui n'est pas sans poser de problèmes, par exemple, pour le stockage sur des appareils mobiles. Or, avec les nouvelles modalités d'images, le nombre de critères à prendre en compte explose. Par ailleurs, ces nouvelles images possèdent des propriétés spécifiques que nous devons prendre en compte. Par exemple, l'image omnidirectionnelle est sphérique. Il faut donc aussi intégrer cela dans nos modèles. »

appareil plénoptique Lytro

Les nouveaux travaux vont d'abord consister à articuler l'apprentissage et la réduction de dimensionnalité. « On suppose que les données peuvent être représentées par des données de plus faible dimension dans des sous-espaces, des domaines particuliers définis généralement par des dictionnaires ou qui vont être appris par des réseaux de neurones. » Les recherches s'appuieront ici sur toute une panoplie de méthodes utilisées classiquement en traitement du signal et en compression : modélisation parcimonieuse, approximation de faible rang ou bien encore modèles à bases de graphes. « On peut voir, par exemple, les données plénoptiques comme des captures multi-vues. Les graphes vont nous aider à connecter les points corrélés. Grâce à l'information de profondeur dans la scène, on sait qu'un pixel ayant une position xy sur une vue est corrélé avec un pixel x'y' sur une autre. Mais les deux pixels correspondent en fait au même point 3D dans l'espace. On peut représenter cette information de dépendance par une arrête reliant deux nœuds d'un graphe afin que le réseau de neurones puisse ensuite en tenir compte. »

Titre

Problèmes inverses

Verbatim

Un problème inverse est un problème mal posé car il n'y a pas une solution unique étant donné les observations d'entrée.

La thématique est aussi fortement liée à la résolution de problèmes inverses comme on les rencontre classiquement en reconstruction de signal : débruitage, défloutage, super-résolution, échantillonnage compressé, etc. « Un problème inverse est un problème mal posé car il n'y a pas une solution unique étant donné les observations d'entrée. Celles-ci peuvent être floues ou bruitées si le capteur est de mauvaise qualité, s'il y a de l'aberration dans l'optique ou bien encore du mouvement durant la capture. Selon le dispositif employé, on dispose donc d'observations différentes à partir desquelles le modèle de formation d'image doit remonter vers les données de la scène réelle. »

Pour l'instant, « dans la littérature, on apprend un réseau de neurones pour chaque type de problèmes inverses. Un pour le débruitage, un pour la super-résolution, etc. Nous voudrions parvenir à un réseau unique utilisable pour tous ces cas. Il s'agirait de représenter au mieux un apriori sur l'image, sur les données que l'on cherche à reconstruire, et de pouvoir utiliser cet apriori profond dans des algorithmes classiques du traitement du signal pour combiner les méthodes d'optimisation. »

Difficulté supplémentaire : « pour bien fonctionner, les réseaux de neurones doivent se nourrir de grandes quantités de données d'apprentissage. Des millions d'exemples. Mais les technologies plénoptiques  et omnidirectionnelles sont récentes. Nous ne disposons pas encore d'autant de données d'apprentissage. Par conséquent, nous risquons d'avoir des paramètres qui collent trop à un petit nombre d'images. C'est que l'on appelle la surinterprétation ou le surapprentissage. »

Microscopes plénoptiques

La chaire va durer quatre ans. Outre la contribution de Christine Guillemot, elle financera, via l'Agence nationale de la recherche, un jeune chercheur, un postdoctorant, un étudiant de thèse et un ingénieur. À cela s'ajoutent un étudiant de thèse financé par Inria et deux étudiants effectuant une thèse Cifre dans deux entreprises partenaires évoluant dans le secteur de l'image.

Le dispositif Cifre permet à une entreprise de bénéficier d’une aide financière pour recruter un doctorant dont les travaux de recherche conduiront à la soutenance d’une thèse. Les dépenses peuvent être éligibles au crédit d’impôt recherche (CIR) dans certaines conditions.

Ces travaux concernent de nombreux domaines d'application comme la voiture autonome. « La navigation du véhicule repose sur la vision par ordinateur. Le réseau de neurones est utilisé pour interpréter le contenu dans la scène. Avec des images plénoptiques, on va récupérer des informations beaucoup plus riches qu'en 2D. »

Dans un tout autre genre, « en microscopie, les informations 3D vont permettre d'effectuer de la super-résolution pour choisir le meilleur plan focal dans l'axe optique. À l'université de Standford, des microscopes plénoptiques sont déjà à l'état de prototypes. »

Le portrait de Christine Guillemot

Portait de Christine Guillemot

Le grade d’officier de la Légion d’honneur

En 2010, Christine Guillemot avait reçu les insignes de chevalier de la Légion d’honneur. Le 1er janvier 2021, elle a été promue au grade d’officier. Une distinction qui vient récompenser la carrière riche de cette chercheuse spécialiste de l’image et reconnue internationalement.

Cliquez ici pour savoir plus 

2 hommes et une femme de dos travaillent sur un projet dans une cafetariat

Responsable de l’équipe de recherche Sirocco

Christine Guillemot est responsable de l’équipe de recherche Sirocco commune au centre Inria Rennes – Bretagne Atlantique et à l’IRISA.

Elle s’intéresse à la conception d’algorithmes dans les domaines de l'analyse, modélisation, représentation, compression et communication de données visuelles (images, vidéo 2D, 3D), pour des applications sur des thématiques comme la TV3D, les réseaux de capteurs multicaméras, et l'imagerie satellitaire.

vieux poste de télévision encadré par des vinyles et des cassettes VHS

Carrière avant Inria

Elle a obtenu son doctorat à l’ENST (École nationale supérieure des télécommunications) de Paris. De 1985 à 1997, elle a travaillé chez France Télécom/CNET, où elle a été impliquée dans divers projets dans le domaine de la compression pour la TV, l’HDTV et les applications multimédia.

Entre 1990 et 1991, Christine Guillemot a également travaillé chez Bellcore (États-Unis) en tant que chercheur invité.

facade du centre Inria Rennes

Arrivée chez Inria

Directrice de recherche Inria depuis 1997, elle prend la tête de l’équipe-projet TEMICS au centre Inria de Rennes de 1999 à 2011, puis de SIROCCO créée en janvier 2012. En 2015, elle est lauréate d’une bourse ERC Advanced grant pour le projet CLIM (Computational Light Field IMaging), sur une durée de cinq ans. En 2020, elle décroche une chaire de recherche et d’enseignement sur l’intelligence artificielle pour le projet DeepCIM (Deep learning for computational imaging with emerging image modalities).

Photo d'un prix spécial avec un chapeau de diplomé

Une chercheuse reconnue internationalement

Christine Guillemot est une spécialiste reconnue dans son domaine de recherche ; elle a reçu de nombreux prix tout au long de sa carrière :

  • 2013 : lauréate IEEE (Institute of Electrical and Electronics Engineers) Fellow 
  • 2015 : lauréate du Google Faculty Research Award ; et lauréate d’une bourse ERC Advanced Grant pour le projet de recherche CLIM (Computational Light Field IMaging
  • 2019 : lauréate de l’EURASIP Technical Achievement Society Award.