Sites Inria

Version française

MICMAC Research team

Methods and engineering of multiscale computing from atom to continuum

  • Leader : Claude Le bris
  • Research center(s) : CRI de Paris
  • Field : Applied Mathematics, Computation and Simulation
  • Theme : Computational models and simulation
  • Partner(s) : Ecole des Ponts ParisTech
  • Collaborator(s) : ECOLE DES PONTS PARISTECH (ENPC)

Team presentation

The MICMAC project-team aims to develop efficient and rigourously founded numerical methods for the simulations at microscopic scale (molecular quantum chemistry, molecular dynamics, atomistics) and its coupling with the macro scales (micro/macro strategies for complex materials and fluids with microstructure). The aspects concerning the control of this systems are also considered, especially the laser control of molecular motion.

Research themes

  • multiscale simulations
  • molecular chemistry
  • numerical optimization
  • optimal control theory
  • laser-matter interaction
  • non-linear analysis
  • variational methods
  • stochastic algorithms
  • PDEs

We are used to collaborating and interacting with :

International and industrial relations

We are used to collaborating and interacting with :

  • CEREMADE, University of Paris-Dauphine
  • Commissariat à l'Energie Atomique, CEA
  • University of Paris VII, University of Nantes, Pauli Institut, Vienna
  • CAS, Ecole des Mines de Paris
  • Laboratoire de Chimie Théorique, University of Paris 6
  • Rice University, Texas
  • Princeton University, New Jersey
  • Sherbrooke University, Canada
  • University of Louvain-La-Neuve, Belgium
  • Dept. of Maths, University of Versailles
  • LCT, University of Marne-la-Vallée
  • Laboratoire Jacques-Louis Lions, University of Paris 6
  • PPM, CNRS-University of Paris-Sud
  • DCCI, University of Pisa, Italy
  • Electricité de France, EDF

Keywords: Multiscale simulations Molecular chemistry Numerical optimization Optimal control theory Laser-matter interaction Non-linear analysis Variational methods Stochastic algorithms Pdes