Sites Inria

Version française

DYOGENE Research team

Activity reports

Overall Objectives

The general scientific focus of DYOGENE is on the development of network mathematics. The following theories lie within our research interest: dynamical systems, queuing theory, optimization and control, information theory, stochastic processes, random graphs, stochastic geometry.

Our theoretical developments are motivated by and applied in the context of communication networks (Internet, wireless, mobile, cellular, peer-to-peer), social and economic networks, power grids.

We collaborate with many industrial partners. Our current industrial relations involve EDF, Google, Huawei, Microsoft, Nokia, Orange, Safran.

More specifically, the scientific focus of DYOGENE defined in 2013 was on geometric network dynamics arising in communications. By geometric networks we understand networks with a nontrivial, discrete or continuous, geometric definition of the existence of links between the nodes. In stochastic geometric networks, this definition leads to random graphs or stochastic geometric models.

A first type of geometric network dynamics is the one where the nodes or the links change over time according to an exogeneous dynamics (e.g. node motion and geometric definition of the links). We will refer to this as dynamics of geometric networks below. A second type is that where links and/or nodes are fixed but harbor local dynamical systems (in our case, stemming from e.g. information theory, queuing theory, social and economic sciences). This will be called dynamics on geometric networks. A third type is that where the dynamics of the network geometry and the local dynamics interplay. Our motivations for studying these systems stem from many fields of communications where they play a central role, and in particular: message passing algorithms; epidemic algorithms; wireless networks and information theory; device to device networking; distributed content delivery; social and economic networks, power grids.