Our sites

Part of larger Federations

FIT IoT-lab
A very large scale open testbed for the Internet of things

Availability of FIT IoT-LAB components

<table>
<thead>
<tr>
<th>Component</th>
<th>Current</th>
<th>Dec 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSN430 nodes</td>
<td>1024 nodes</td>
<td>1144 nodes</td>
</tr>
<tr>
<td>M3 nodes</td>
<td>232 nodes</td>
<td>938 nodes</td>
</tr>
<tr>
<td>A8 nodes</td>
<td>Summer 2014: 200 nodes</td>
<td>Dec 2014: 550 nodes</td>
</tr>
<tr>
<td>M3 nodes on robots</td>
<td>End of 2015</td>
<td></td>
</tr>
</tbody>
</table>
FIT IoT-LAB is a platform built to help foster the development, tuning and experimentation of protocols and applications for Internet of Things and wireless sensor networks.

FIT IoT-LAB is a very large scale testbed with:
- 2700+ nodes on six sites
- wireless nodes (IEEE 802.15.4 or sub-1 GHz)
- remote accessibility by users
- open access, open software, open tools.

FIT IoT-LAB offers:
- simple and quick experiment deployment
- easy evaluation, result collection and analysis
- ready to use protocols and OSes (for IoT).

How does it work?

Register / login
FIT IoT-LAB offers open access to the testbed. Any user can register at www.iot-lab.info under terms of use www.iot-lab.info/charter/.

Soon: federated access through OneLab

Select / build your application
Starting guide, Tutorials, Dev Center (with sample applications and more) available at www.iot-lab.info/get_started/

Configure your experiment and reserve resources
Reservation through web interface, from command line or from REST API.

Interact with nodes during your experiment

FIT IoT-LAB in 4 steps

1. **Register / login**
FIT IoT-LAB offers open access to the testbed. Any user can register at www.iot-lab.info under terms of use www.iot-lab.info/charter/.

Soon: federated access through OneLab

2. **Select / build your application**
Starting guide, Tutorials, Dev Center (with sample applications and more) available at www.iot-lab.info/get_started/

3. **Configure your experiment and reserve resources**
Reservation through web interface, from command line or from REST API.

4. **Interact with nodes during your experiment**

First generation (class 0 devices)

WSN430 Node
- TI MSP430™ microcontroller
- 48 kB Flash
- 10 kB RAM
- IEEE 802.15.4 radio (2.4 GHz), or sub-1 GHz transceiver (CC1101)

Second generation (class 1 devices)

M3 Node
- Cortex™-M3 microcontroller
- 64 kB RAM
- 512 kB Flash
- IEEE 802.15.4 radio (2.4 GHz Atmel™ AT86RF231)

A8 Node
- Integrates a M3 Node
- Cortex™-A8 microcontroller (600 MHz)
- 256 MB RAM
- Integrates a GPS receiver
- Linux support

IoT-LAB provides three layers of API: Drivers, Operating Systems, and Communication Libraries.

IoT-LAB provides ports of Operating Systems for the “Internet of Things” (IoT): Contiki-OS, FreeRTOS™, TinyOS, OpenWSN, RIOT.

IoT-LAB supports IETF/IoT protocols: 6LoWPAN, RPL, COAP, 6TiSCH (with IEEE 802.15.4e).

https://www.iot-lab.info/dev-center/