Sites Inria

Intelligence artificielle

Séminaire DATAIA avec Lars Kai Hansen

Dans le cadre de son animation scientifique, l'Institut DATAIA organise des séminaires visant à échanger autour de l'IA.

Le séminaire aura lieu le mercredi 27 novembre de 15h00 à 17h00 au centre Inria-Saclay - bâtiment Alan Turing - Amphithéâtre Sophie Germain.

  • Date : 27/11/2019

Lars Kai Hansen (Technical University of Denmark ) est l’animateur du séminaire DATAIA du mercredi 27 novembre, organisé en collaboration avec l'équipe Parietal d'Inria.  

Inscriptions gratuites mais obligatoires dans la limite des places disponibles.
Pour des raisons de sécurité, aucune personne non inscrite ne pourra accéder au lieu du séminaire


Principal component analysis (PCA) is widely used, easy to formulate and compute - yet has many surprising behaviors!  It has been shown that the performance of PCA depends on the signal-to-noise ratio and on the ratio of sample size-to-dimensionality. Since the early 90s it is also known that a critical sample size is needed before learning occurs (Biehl and Mietzner, 1993). Here we generalize this analysis to include missing data.  An analytic result suggest that the effect of missingdata is to effectively reduce signal-to-noise rather than - as commonly believed - to reduce sample size. The theory predicts a phase transition induced by the missingprocess and this is indeed observed in simulated and in real data.

N. Ipsen, L.K. Hansen. Phase transition in PCA with missing data; Proc. ICML 2019; PMLR 97:2951-2960, 2019.

Mots-clés : Institut DATAIA Intelligence artificielle

Haut de page

Suivez Inria