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Executive summary
All over the world, food systems are undergoing profound changes caused 

by external pressures (climate change, organisation of value chains, etc.) and 
intrinsic factors (innovation, reduction in the number of farmers, etc.). Food 
security is the number one concern at the global level and is today accompanied 
by a strong demand for production methods to become more sustainable and for 
the protection of a living rural structure based on attractive family farming. This 
is why, as the FAO reminds us,1 agroecology is a vital issue in a growing number 
of countries, including France. In parallel to these changes, agriculture, like all 
economic sectors, is seeing an upsurge in digital technology. Since the mid-2010s, 
the concept of “digital agriculture” has emerged. It defines both a form of agri-
culture and a food system that uses digital science and technology such as data 
science and technologies for acquisition (satellites, sensors, connected objects, 
smartphones, etc.), transfer and storage (3G/4G/5G coverage, low-speed terrestrial 
or satellite networks, clouds) and on-board or remote processing (supercomputers  
 
 
 

1. FAO (2018b), Initiative de passage à l’échelle supérieure de l’agroécologie, available at  
http://www.fao.org/3/I9049FR/i9049fr.pdf
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accessible via very high-speed communication networks, artificial intelligence) 
at all levels of agricultural production and its ecosystem: farms, support services, 
territories, value chains.2 

Digital technology is often seen by governments and experts as an opportunity 
to contribute to the development of agriculture for the benefit of farmers, 
consumers and society in general. But what does this mean? What digital tools 
should be developed?  

This white paper aims to shed light on these issues and present research 
perspectives to better understand, master, prepare, equip and support the 
deployment of digital technology in agriculture and the food chain, while ta-
king into account the way in which it will transform sectors and their ecosys-
tems, with the aim of using it to support the agroecological transition (AET) 
and the territorialisation of food and rebalanced supply chains. It is structured 
in six chapters. After the introduction, Chapter 2 presents the challenges of 
transforming agriculture and food systems. An overview of the state of the art 
then presents existing digital technologies (Chapter 3). The possibilities offered 
by digital technology for the agroecological transition and better inclusion in 
society are then inventoried (Chapter 4). Identification of the risks linked with 
the uncontrolled development of digital agriculture is just as necessary to avoid 
or minimise the pitfalls (Chapter 5). Chapter 6 presents the technical issues and 
challenges identified that could mobilise our two institutes, INRAE and Inria, but 
also the French research ecosystem, in particular to develop responsible digital 
technology for agriculture. 

The challenges facing agriculture  
require a reconsideration of food production 
and supply methods 

Today, a series of global changes are placing the agri-food system under strain. 
On the one hand, the growing population (9.5 billion people in 2050 according to 
the UN’s median scenario) with a changing diet (as in China for example), must be 
fed while adapting to a context of increasing devastation: climate change, collapse 
of biodiversity, reduction of resources (soil, fresh water, phosphorus). On the other 
hand, agriculture must accelerate changes to implement livestock production 
systems that are more respectful of animal welfare and reduce its impact on the 
environment (reduction of the use of inputs such as antimicrobials, fertilisers, 

2. Bellon-Maurel V., Huyghe C. (2016) L’innovation technologique en agriculture. Géoéconomie, 80 - May/June 
2016, pp. 159-180
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pesticides, reasoned use of natural resources such as water, reduction of soil 
compaction and greenhouse gas emissions, better use of biological regulations) 
and contribute to CO2 storage3 and the preservation of biodiversity. In the last 
70 years, agricultural dynamics have favoured intensification and specialisation. 
Farm sectors are based on competitive pricing, a phenomenon that is exacerbated 
by globalisation. Essentially, they are subject to unbalanced power relations 
between actors with diverse and even divergent interests. In addition, farming 
is carried out in territories that have, in many cases, become specialised, leading 
to imbalances. This leads to great complexity (in terms of specialisation and  
interdependence of these elements) that amplifies instabilities, multiplies the 
risks of failure and is ultimately a major hindrance to change. It is therefore crucial 
to very quickly implement strategies to improve production techniques and ways 
of organising the agrifood system to increase their resilience. 

According to the FAO, production can evolve towards two models:4 either 
sustainable intensification (improvement of process efficiency and integration into 
long supply chains), agroecology,5 which is based on natural production processes 
and uses local and sovereign food systems. This second model is now supported 
by the French EGAlim law6 and many local authorities and citizens. Farm structure 
is also a point of attention: it is important to provide the conditions for decent 
work for farmers and protect family farming, which is in the majority in the world.

In this context, digital technology could contribute to the virtuous transition 
toward agroecology in territorialised food systems and the protection of family 
farming by providing information to better understand these complex systems and 
individual or collective decision-making support as well as supporting concrete 
action, exchange, the reconfiguration of value chains, the development of strategies 
and policies, etc. It is precisely this path of placing digital technology at the service 
of the transition to agroecology and the renewal of food systems that we have 
chosen to explore in this white paper.

3. https://www.4p1000.org/fr/linitiative-4-pour-1000-en-quelques-mots
4. HLPE (2016). Sustainable agricultural development for food security and nutrition: what roles for livestock? 
A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food 
Security. Rome, Italy. http://www.fao.org/3/a-i5795e.pdf
5. Agroecology is a set of practices that aim to improve agricultural systems by «mimicking» natural processes, 
thus creating beneficial biological interactions between the components of the agroecosystem.
6. Law No. 2018-938 of 30 October 2018 for balanced trade relations in the agricultural and food sector and 
healthy, sustainable food accessible to all (1), https://www.legifrance.gouv.fr/loda/id/JORFTEXT000037547946/
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Foundations and the state of the art  
in technologies and methodologies

Before reflecting on digital technology designed to assist this transformative 
ambition, the first step is to see what can be offered by current research advances. 
Digital agriculture is based on three levers for action which, when mobilised 
together, lead to innovations: (1) the abundance of data due to the development 
of sensors (from nanosensors to satellites) and facilitated communication and 
storage, (2) computing capacities, which make it possible to implement artificial 
intelligence and new modelling methods and (3) connectivity and information 
exchange interfaces. In addition to these three levers, there is a fourth one which 
already existed but is being renewed by measurement and computing capacities: 
automation and robotisation. In this paper, we will focus in particular on the 
following technology and methodologies.

DATA7 
Sensors, which provide data acquired on the ground, present hardware and 

software challenges. It is important to define the nature and scope of what needs 
to be measured and which measurement technology(ies) should be prioritised and 
how to implement it (or them) to obtain useful information at the lowest cost. 
Free satellite images (such as from Sentinel-2), connected objects and collabo-
rative applications on mobile phones are all massive data sources. By processing 
this data, we can quantify the desired property either directly or indirectly by 
merging data from multiple sources. This latter approach is a strategy to improve 
the accuracy of the assessed value but raises multiple aggregation issues due to 
the nature of the sources and their granularity and precision. Data access is also 
an issue: the use of FAIR data facilitates its reuse while blockchains allow data 
to be shared in an unfalsifiable way between actors with divergent interests (as 
in value chains).  

7. It is important to bear in mind that digital agriculture originated in precision farming and livestock produc-
tion, which explains why, in the current consensus, digital agriculture uses data collected on the ground, initial-
ly in the context of precision agriculture, but not genomic data. A convergence between the two communities 
will certainly develop in the coming years, in particular through phenotyping. 



9

MODELLING  
This is the key element in representing agroecosystems, which are inherently 

complex, in order to simulate, optimise and manage them. Different levels are 
involved, from plants and animals to the human population, the territory or the 
value chain, with an additional challenge associated with the coupling of levels 
and models representing subsystems. Modelling is a relatively old approach 
in agronomy but it is today being renewed by digital technology. On the one 
hand, the profusion of data leads us to supplement traditional mechanistic 
approaches based on human analysis with empirical models from data processing 
(linear or non-linear multivariate methods, artificial intelligence). On the other 
hand, modelled systems are becoming more complex and now include humans. 
Decision modelling therefore involves additional concepts (bounded rationality) 
and mobilises specific frameworks to take account of the human agent: discrete 
event systems, agent-based systems, constraint-based models, etc. Simulation 
is used to represent agrosystems or even socioecosystems with behaviours that 
are difficult to analyse; it provides a description of the possible states and can 
be used for many purposes such as individual or collective decision support 
(guidance models) and training. Optimisation goes further in decision support 
(prescription), because it searches for solutions to a given problem according to 
one or several criteria. It is used in automatic control (managing greenhouses 
or agrivoltaic devices), robotics, individual decision making (food formulation, 
crop planning, etc.) and collective decision making (land or water management, 
economic decisions, etc.). It relies on a range of methods to integrate more and 
more complexity (deterministic methods, metaheuristic stochastic methods, 
etc.). It raises numerous research questions linked to uncertainty, temporality, 
the complexity of the processes to be modelled, etc.  

KNOWLEDGE EXTRACTION  
In addition to these analytical modelling methods, new families of methods 

are emerging with models that are directly inferred from the data, when there 
is sufficient data to cover the parameter space. This is particularly the case for 
data from remote sensing or time series (such as those collected via connected 
objects). After a necessary pre-processing phase to improve the reliability of the 
data (“cleaning”, comparison with expert data), it is processed using different 
formalisms to extract intelligible information. Supervised approaches consist in 
predicting values (that are impossible to measure directly) or classifying data into 
different categories using linear or non-linear methods (e.g. neural networks), 
which implies having sets of measured and reference data (the desired value). If 
reference data is not available, non-supervised approaches are used (clustering, 
pattern mining). Specific methods are implemented to improve the performance of 
learning systems (reinforcement learning) or data aggregation (OLAP processing). 

Executive summary



10

New knowledge is extracted or generated by the models and is formalised and 
organised to make it available to different users through decision support systems 
adapted to each activity, whether cropping or livestock production, and at all 
levels. New ontologies are needed to create ergonomic interfaces that will allow 
this knowledge to be shared, linked and used, in particular by targeting the new 
opportunities offered by the Semantic Web. 

ROBOTICS  
Automated and/or robotic systems are another aspect of digital technology 

that are becoming increasingly accurate and reliable. Robotics initially developed in 
the livestock sector (fixed milking robots, cleaning robots in closed environments), 
but it faces additional challenges in crop production (changing and uncontrolled 
outdoor environment). Current issues include the use of GPS, the question of 
precise, secure and low-cost localisation, the safety of mobile robots (avoiding 
collisions, being able to negotiate obstacles) and modes of cooperation between 
humans and robots, animals and robots and even ground robots and drones.  

Digital technology offers opportunities  
for agroecology and sustainable food

Steered in the right direction, digital technology has the potential to open up 
many opportunities to respond to the challenges of the agroecological transition 
(AET), improve integration into agriculture’s vertical (upstream-downstream) 
and horizontal (territorial) ecosystems and increase farmers’ capacity for action.  

IMPROVING PRODUCTION  
Devices to assist the farmer at the sensory (sensors), cognitive (DSS for “decision 

support systems”) and physical (machines) levels could improve production 
methods. Today, the concept of precision agriculture or precision livestock 
production is generally associated with intensive farming, but it is nonetheless 
valid in agroecology, in particular for monitoring plant and animal health using 
automated observations from sensors and models and for implementing more 
complex cultivation processes (mixed cropping, selective harvesting, etc.) on a 
large scale. This requires sensors and models capable of analysing the signal 
received to give either a description of the state, a prediction of the future state 
or a prescription. Beyond the tactical decision behind the intervention, some 
models could help in strategic decision making for production organisation, a 
phase that is particularly delicate in transition processes (AET, climate change) and 
multi-objective decision making. As physical assistants to reduce arduousness, 
robots could provide solutions to the very specific requirements of new cropping 



11

systems (mixed cropping, agroforestry) and livestock systems (milking robots for 
pastoral farming). However, improving production also requires building knowledge 
beforehand about these new, diverse and complex systems. The construction 
of essential knowledge for AET could benefit from three interconnected digital 
levers: (i) representation of these complex systems, (ii) massive (and potentially  
participative) data collection on new methods in cropping and livestock production 
(on-farm phenotyping) and (iii) inference of new models from the data.  

IMPROVING INTEGRATION INTO THE ECOSYSTEM
Digital technology could help renew the agricultural ecosystem including 

agricultural services (insurance, advice), the organisation of value chains and the 
management of agricultural territories. Value chains are being transformed by 
disintermediation - encouraged by the Internet – and the possibility for product 
transparency, which is increasingly desired among consumers today. Blockchains, 
which are often evoked as a way of guaranteeing this transparency, still pose 
multiple technical and governance issues. Territorial management is another 
aspect of the agricultural ecosystem that is impacted by digital technology. The 
territorial level concerns both agroecology (landscape ecology, closing cycles via 
the circular economy) and agriculture, which plays a central role in territories 
and is the subject of tensions linked to the use of resources (land, water) and the 
role it plays in ecological services. Digital technology could offer tools for better 
identifying material flows and facilitating mediation and collective decision- 
making (support models, etc.). 

IMPROVING SHARING AND LEARNING 
The connectivity offered by digital science and technology facilitates individual 

and collective sharing and learning, both sources of innovation in agroecology. 
Knowledge (including traditional knowledge) is capitalised and exchanged between 
peers, either directly (social networks), or through participatory collective processes 
in which digital technology plays an increasing role (Digital Farmers Field School8). 
Participatory approaches with an innovative aim (open innovation, living labs) 
could be enhanced by technologies that facilitate the capitalisation, representation, 
expression and processing of data and trace the contribution of each individual. 
Lastly, the farmer could become a data supplier to private or public actors (research 
through on-farm experimentation, territorial documentation, etc.), which could 
change their status for better integration and recognition.

8. Witteveen, L., Lie, R., Goris, M., Jane Ingram,V. (2017) Design and development of a Digital Farmer Field School. 
Experiences with a digital learning environment for cocoa production and certification in Sierra Leone.  
Telematics and Informatics 34(8), DOI: 10.1016/j.tele.2017.07.013

Executive summary
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OPPORTUNITIES IN THE GLOBAL SOUTH
Most international organisations and backers see digital technology as a 

major source of transformation in the Global South, particularly in Africa. Digital 
technology could help diversify the service economy, accelerate the structural 
transformation of agriculture and make it more attractive to young people, 
improve value chains at local (building territorial food systems) and long-distance 
(guaranteeing product traceability) levels and help build the information capital 
of territories. However, technical issues persist -related to the weakness of the 
network coverage, the lack of infrastructures, the weakness of information systems, 
and the taking into account of the diversity of languages or even illiteracy in the 
Human-Machine interfaces. Digital technology also raises political, economic 
and social issues.

Risks identified to be avoided
The development of digital technology in society and the changes it brings are 

naturally accompanied by inherent risks. The agricultural sector is no exception 
and many questions are being raised about whether digital agriculture can meet 
expectations, what difficulties may be encountered and what vulnerabilities it 
could accentuate.

The first risk identified is that of failing to respond to the demand for a more 
ecological form of agriculture. While the development of digital technology in 
agriculture offers solutions for reducing inputs, this benefit could be accompanied 
by a technological lock-in that would hinder the implementation of alternative 
practices that are more radical and systemic, or of the set up of alternative 
organisational methods that could offer greater environmental and socioeconomic 
benefits. Furthermore, the widespread introduction of digital interfaces between 
farmers and animals or plants, in a context of the increasing technologisation of 
agricultural production, could also weaken connections to nature (particularly 
the human-animal connection), but society today is clearly looking for a type 
of agriculture that is more strongly connected to the living world around us. 
Lastly, digital technology has a definite ecological footprint, which is still poorly 
understood in agriculture, and the increase in equipment and operations for data 
capture, transfer, storage and calculation could worsen the environmental impact.   

Another group of risks to be considered concerns the social consequences of 
reinforcing, through digital technology, a trajectory of industrialisation and the 
concentration of production in ever larger units and farms that are geared towards 
productivity. This movement would risk excluding minority forms of agriculture, 
mainly farms operating at a smaller economic scale. The development of robotics 
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could contribute to precarious employment in agriculture, especially for poor 
migrant worker populations. Difficulties in access to digital technology could also 
be a factor of exclusion in agriculture, whether at the individual (lack of skills) or 
territorial level (underdeveloped digital infrastructure). Digitalisation could affect 
farmers’ decision-making autonomy (use of DSS) or even the meaning of their 
profession, with the fear of becoming mere “data workers”. Another question 
concerning digitalisation is the change in power relationships between farming and 
its upstream and downstream sectors. Upstream, digital technologies could affect 
the understanding and use of production tools due to their increasing complexity, 
making maintenance and training increasingly difficult and potentially leading 
to dependence on certain specific inputs9 Downstream, new data technologies 
could change the role of certain actors (such as companies in the digital sector) 
in value chains, with consequences in terms of sharing and governance and the 
risk of forms of subsidiary creation driven by downstream actors. Lastly, it is 
important to consider the concerns raised by digital technology for agricultural 
advising and its actors, methods, content and legitimacy.

The third group of risks identified concerns digital and food sovereignty. 
Growing digitalisation in the food chain could later also include agriculture with 
the emergence of monopolistic players and tools. In addition, digital sovereignty 
involves data control and there is a risk of agricultural data being seized by suppliers 
of digital technology or services (agri-equipment, AgTech companies, digital 
giants, etc.) The sharing of agricultural data, which is a priority for innovation, 
must therefore be structured and the governance of this data clarified. Lastly, 
cybersecurity risks must also be taken into account, such as potential attacks via 
connected objects (sensors, robots, etc.), the availability of geolocation systems 
and the challenge of preventing piracy (theft, damage, destruction) of agricultural 
data. Our food systems, which have remained relatively unimpacted until now, 
are of vital importance, which could make them potential targets in the future.

Lastly, the digitalisation of the agrifood system may increase dependence on 
resources among the different actors in the system and create new dependences 
with those who produce and own these technologies. This may accentuate the 
vulnerabilities of the system in the face of the many upheavals that will inevitably 
strongly impact on the functioning of our societies in the coming decades. More 
generally, it should be noted that agriculture and its upstream and downstream 
sectors form a complex sociotechnical system of which the overall energy cost 
is rising; it is important that this does not outweigh the anticipated benefits of 
digitalisation. The development of digital technology can also amplify the dynamic 

9. An interesting parallel is that of the “printer/ink” lock-in: printers are sold very cheaply but require ink  
of the same brand to be used, which itself is sold at a very high price.

Executive summary
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of growing complexity, and must not be allowed to spark a headlong technological 
rush that would lock us in a spiral of uncontrolled complexity.

Challenges in the development of digital 
technology for the agriculture of tomorrow

Seizing the opportunities offered by digital technology for agroecology and 
rebalanced value chains, while identifying and anticipating the risks, also poses 
scientific, technical, economic, organisational and political challenges. We will 
focus in detail on the scientific and technical challenges and the associated human 
challenges in order to respond to four main types of issues for the sustainable food 
system: (i) improving collective management and incorporating the territorial level, 
(ii) improving farm management, (iii) rebalancing the value chain between upstream 
and downstream and (iv) creating and sharing data and knowledge.  

COLLECTIVE MANAGEMENT 
This generates new needs: (i) collecting data at the territorial level (while 

managing the balance between specificity, scope of measurement, resolution 
and heterogeneity of multisource data), (ii) visualising this data and the post-
processing results for non-specialist audiences (by elucidating complex concepts 
like uncertainty, incompleteness), (iii) enriching territorial engineering methods to 
facilitate participation and open innovation (need for support models, gamification, 
analysis tools for participatory sessions), collective decision making (digital tools 
for deliberation, negotiation and voting processes) and mediation (creation of 
digital “boundary objects” such as support models to encourage dialogue between 
stakeholders).

INDIVIDUAL FARM MANAGEMENT
The aim is to increase the farmer’s perceptive, cognitive and physical capacities. 

For perception, there is a need for highly accurate and secure geolocation, early 
warning systems for plant or animal problems, frugal, inexpensive and non-invasive 
sensors, distributed data processing to limit transfer, fusion of heterogeneous 
data to construct relevant indicators and uncertainty reduction strategies. 
With regard to decision making, research challenges concern several aspects of 
model construction: representing complex and extensive socio-agroecosystems 
(multiscale and multi-temporal modelling, integration of interactions, digital 
twin concept), incorporating expert knowledge into models (knowledge of the 
environment, strategic choices), building user-centred DSS (personalising inferred 
information, creating evolving models, ensuring the correct functioning of the 
recommendation made, adapting the user interface to the specific aspects of 
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agricultural work), managing uncertainty and its spread. In robotics, there are 
still challenges to be met in scene perception and interpretation in a dynamic 
environment (i.e. the analysis of images and other “perceptions” by the robot), 
mobile manipulation and coordination with a moving carrier, human-machine 
interaction and shared autonomy, soundness of operation and adaptation to new 
production systems and, besides these technical aspects, questions in the field 
of humanities about the link between robotics and the transformation of work. 

THE AGRICULTURAL ECOSYSTEM AND STAKEHOLDER RELATIONS
Upstream, services could be improved through digital technology by developing 

more personalised “digital” advice, which would require incorporating the farm’s 
characteristics and potential as well as the farmer’s preferences and underlying 
models. Insurance policies could be improved by creating new and fairer indicators 
based on automatically collected data (remote sensing, connected objects). 
Downstream, reconnecting farmers with consumers could be assisted through 
simple digital solutions that increase transparency (information on the products) 
and by improving platformisation. Blockchains could be a solution in response to 
the demand for transparency, bringing with them even more technical challenges 
(link between the flow of information and physical flows, coupling between private 
and public blockchains, environmental impact of public blockchains, integration of 
data for reuse) and institutional challenges (how should blockchains be governed?). 
Platformisation and disintermediation pose other challenges: production planning 
between multiple farmers (to supply catering or urban needs); coordinating actors 
within “food hubs” grouping different products; developing logistics solutions for 
peri-urban production. In the Global South, these issues are crucial in avoiding 
post-harvest losses, aggravated by specific weather conditions.

TOOLS FOR SHARING DATA AND KNOWLEDGE
Data and knowledge will be core to any digital system designed to promote 

agroecology, if the scientific, technological, regulatory, organisational and 
institutional challenges associated with their sharing can be met. Participatory 
data (from professionals or not) will be available in greater volume, raising 
questions about data quality, estimation and calculation of the value produced 
and recognition of the role of actors in the resultant innovation. What forms of 
governance should be used for this data in the context of reuse? How can virtuous 
and secure data circulation that avoids power appropriation by a single actor be 
supported? As for knowledge – which needs to be co-constructed (participatory, 
serious games, etc.) and formalised – it raises the question of digital commons 
and the collection and connection of expertise via ontologies that will require 
pooling and alignment..
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IN CONCLUSION, ALL RESEARCH IN DIGITAL AGRICULTURE WILL BE  
UNDERPINNED BY CROSS-CUTTING CHALLENGES
Research aimed at building responsible digital technology for sustainable 

agriculture must absolutely incorporate (i) a systemic vision for agriculture and 
digital technology (taking account of the impacts of technology), (ii) the search 
for frugality (to reduce environmental impact and economic cost), (iii) the search 
for resilience rather than economic optimisation in food systems and protection 
of farmers’ autonomy and (iv) cybersecurity (attacks via the IoT, data hijacking, 
geolocation jamming, etc.), a topic that is all the more essential as it affects food 
sovereignty. 

General conclusion 
The transition of food systems and agriculture towards more sustainable 

methods (agroecology, territorialized food systems, rebalanced long chains etc.) 
in a context of climate change is one of the biggest challenges for the years to 
come. Digital technology is being deployed rapidly in agriculture and, while it 
can provide solutions, it can also contribute to damaging fragile balances. It can 
accompany and accelerate virtuous transitions but it is essential to anticipate and 
avoid the pitfalls of misuse. The most pertinent research challenges concern: data 
acquisition at different levels and associated governance issues; devices to assist 
farmers at the cognitive (decision support), sensory (acquisition and transmission 
of information) and physical levels (tools, robots and cobots);10 the modelling of 
these complex systems and management of the associated uncertainty; digital 
tools for encouraging participatory processes (essential in AET); traceability and 
use of data among consumers and, lastly, the key issue of cybersecurity due to 
the fact that agricultural production concerns food sovereignty. The adopted 
approach will play a fundamental role in building responsible digital technology 
for farmers: the priority research position could use the responsible research and 
innovation (RRI) framework, which is starting to emerge in digital agriculture and 
requires a degree of inter- and cross-disciplinary work. Lastly, it is important to 
remember that several agricultural models exist and the future will bring even 
more diversity, leading to the development of digital offers adapted to each 
model and its needs.

10. Robotic elements that work collaboratively with humans
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All over the world, food systems, i.e. “the ways in which humans organise 
themselves, in space and time, to obtain and consume their food” (Malassis, 
1994) are undergoing profound changes caused by external pressures (climate 
change, value chain organisation, etc.) and intrinsic factors (innovation, reduc-
tion in the number of farmers, etc.). Consumption patterns are changing under 
the pressure of five types of factors: (i) demographic and lifestyle factors, (ii) 
economic factors, (iii) cultural and value factors, (iv) technological factors and 
(v) regulatory factors (Blezat consulting et al., 2017). At a worldwide level, “the 
primary concern about the future of food and agriculture is knowing whether 
these systems will be able to feed everyone sustainably and efficiently by 2050 
and beyond, while meeting the additional demand for agricultural products due 
to non-food uses” (FAO, 2018a). But while food security is the primary concern 
at the global level, agroecology,11 and particularly its large-scale deployment – 
including small farms – are also highlighted by the FAO (FAO, 2018b). Preserving 
family farming and lively rural structures is instrumental to the attractiveness 
of agricultural professions, another issue found worldwide. In France, agriculture 
is turning to the agroecological transition to increase its resilience (adapting to 
climate change), reduce its environmental impact (fewer pesticides, antibiotics, 
fertilisers, etc.), respect animal welfare and ensure a decent income for farmers.

In parallel to these major changes in food production and consumption 
patterns, another phenomenon is emerging in food systems, as in all sectors of 
the economy: the deployment of digital technology offering “versatile technology 
that is transforming processes and life in all areas across the planet” (Scholz et 
al., 2018). This is known as digital agriculture.

“Digital agriculture” refers to a form of agriculture and, beyond that, a food 
system “that uses information and communication technology (ICT): technologies 
for data acquisition (satellites, sensors, connected objects, smartphones, etc.), 
data transfer and storage (3G/4G coverage, low-speed terrestrial or satellite 
networks, clouds) and on-board or remote processing (supercomputers accessible 
via very high-speed communication) […] at every level of agricultural production 
and its ecosystem, whether on the farm (optimisation of cropping operations, 
herd management, etc.), in support services (new agricultural advisory services 
based on automatically collected data), or more widely at territorial level (water  
 
 

11. We use here the definition of (Caquet et al. 2020): “Agroecology is at once a scientific field, a practice  
and a social movement. […] Agroecology is above all a new paradigm that aims to utilise biological processes 
to respond to the demands for both agricultural production and other agroecosystem services: protecting 
resources, contributing to climate change mitigation, preserving habitats and cultural heritage.”
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management) or in the value chain (enhancing inputs such as seeds,12 improving 
harmony between production and the market, etc.)” (Bellon-Maurel and Huyghe, 
2016). It is important to specify that there is now a global consensus on the 
definition of digital agriculture, which is essentially based on the multiplication of 
data collected “in the field”, the role of artificial intelligence, as well as connectivity 
and automation. Today, this consensus does not include genomics, where data 
is collected in the laboratory. We therefore deliberately do not address this 
field in this paper. Connections will be drawn between these two topics in the 
conclusion (in particular in terms of the advantages of collecting very precise 
data to characterise the environment).  

Digital technology was first used in agriculture about 50 years ago (satellites, 
then computing capacities, GPS, etc.) and has become more widespread with 
new data acquisition systems (Sentinel satellites, connected objects and the 
Internet of Things (IoT), high-speed phenotyping, supply-chain traceability) and 
the explosion of processing capacities. The term “digital agriculture” was coined 
in the early 2000s, while the concept of precision agriculture has existed in the 
literature since the mid-1990s. The number of articles (journals and conferences) 
on digital agriculture (with “Digital Agriculture” in the title, keywords and abstract) 
stagnated at fewer than ten per year until 2017, when it began to rise exponentially 
with 59 publications in 2019 (compared with 1000 publications on Precision 
Agriculture), including 6 in a special issue of NJAS (Wageningen Journal of Life 
Sciences), and 94 publications in 2020. The concept is therefore still in its infancy, 
even in research. In the political sphere it began to draw attention between 2010 
and 2015, with expert reports and political positions in favour of the development 
of digital technology in agriculture, whether in the USA (The Hale Group & LSC, 
2014), France (the “Agriculture innovation 2025” report in 2015),13 Europe (the “A 
smart and sustainable digital future for European agriculture and rural areas”  
declaration in 2019),14 or elsewhere in the world (Dinash et al., 2017; FAO, 2019; OECD, 
2019). In France, digital technology, connected objects, precision agriculture and 
the use of data have been identified as key technologies in the field of agriculture 
and agrifood (DGE, 2019).

12. Seed enhancement is a vast field that encompasses genomics (knowledge of genetic potential), phenotyping 
(measurement of the expression of this potential) and the relationships between the two. Digital agriculture 
takes an approach to genetic improvement based on phenotyping due to the enhanced possibilities  
of characterising plants or animals, brought about by new sensors; it does not include genomic research,  
which is carried out upstream.
13. https://agriculture.gouv.fr/sites/minagri/files/rapport-agriculture-innovation2025.pdf
14. Available at https://ec.europa.eu/digital-single-market/en/news/eu-member-states-join-forces-
digitalisation-european-agriculture-and-rural-areas

1_Introduction
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The development of digital technology in the agrifood chain is proving to be 
inevitable and is often seen by governments and experts as an opportunity to 
contribute to changes in agriculture for the benefit of farmers, consumers and 
society in general. What is at the heart of the matter? How can research institutes 
like INRAE and Inria accompany this change?

This white paper aims to address these questions. They have already been 
covered in numerous publications in recent years, but they are still few white 
papers (the most extensive examples are Isaac and Pouyat, 2015 and Scandurra 
et al., 2020, among others). The originality of this white paper will be to study to 
what extent digital technology can contribute to agroecology and how research can 
be oriented in this direction. It will also attempt to answer the following question: 
what research questions must be addressed in order to understand, master, prepare 
and support the deployment of digital technology in agriculture and the food 
chain while taking account of the way in which it will transform sectors and their 
ecosystems, with the aim of placing it at the service of agriculture, farmers and 
the common good? We have chosen to concentrate on research needs and not 
to cover the field of innovation, which is very dynamic with numerous start-ups 
and therefore very fluid, meaning that the paper would quickly become outdated.  
In particular, we will study the role that digital technology can play in the 
development of agroecology and sustainable food systems. With this paper, we 
aim to provide an overview of the state of play and propose paths which, we hope, 
will lead us collectively towards responsible research and innovation in digital 
agriculture (Owen et al., 2012). 

The white paper is structured as follows: first of all, it presents the challenges 
of the transformation of agricultural and food chains, then provides an overview 
of the state of the art and existing technology. Lastly, it explores the opportunities 
offered by digital technology in broad terms and the risks linked with an uncon-
trolled development of digital agriculture. Finally, core reflections highlight the 
technical issues and challenges that arise in developing the digital agriculture 
of the future, and in particular those that could mobilise the research teams of 
our two institutes. 
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2 
What are the challenges 

facing agriculture?
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Agriculture is already facing multiple challenges. These concern food security, 
the environmental impact of agriculture and the organisation of the sector. Can 
digital technology help build a desirable future to respond to these issues? 

     World food security under strain
The world’s population is growing at an annual rate of 1.1% and is expected to 

reach around 9.5 billion people in 2050, according to the UN’s median scenario. 
This population growth generates a considerable increase in global food demand, 
which is also accelerated by rapid development and the changing diet in China 
(Bai et al., 2020). The world’s agrifood system is increasingly subject to constraints, 
especially since it relies on a number of non-renewable resources that are becoming 
scarcer or more and more damaged (fresh water, phosphorus, oil, cultivable soil, 
etc.). This system will soon feel the full force of the impact of climate change, both 
directly (extreme weather events, drought, etc.) and indirectly (melting glaciers, 
proliferation and spread of harmful species of organisms and diseases, rising sea 
levels) (IPCC, 2014; UNESCO, 2019). It is also under threat from the current collapse 
of biodiversity in seeds, pollinators, crop auxiliaries, etc., which endangers many 
ecosystem services necessary for its proper functioning (FAO, 2019a). Conflicts 
over the use of products, land and water will also increase with, for example, the 
use of biomass for energy and the implementation of afforestation/reforestation 
programmes to capture CO2 (also known as “negative emissions” techniques, 
which now underpin all IPCC scenarios limiting the temperature increase to 2°C). 
Moreover, for a number of cereals deemed critical15 for food security, agricultural 
yields seem to have reached their limits in developed countries.16 Lastly, the  
current agrifood system is not very resilient. It depends, for example, on globalised 
resources that are unevenly distributed around the world (phosphorus, oil, etc.) 
and a whole range of potentially fragile exogenous systems such as just-in-time 
transport and logistics systems, global markets and finance (speculation, price 
volatility, etc.) and flows of seasonal migrant workers. The Covid-19 health crisis 
has highlighted some of these vulnerabilities. 17

The growing tension between supply and demand leads to a risk of worldwide 
food shortage in the medium term with multiple geopolitical consequences 
(Brown, 2012). The latest statistics from the FAO show that hunger is on the rise  
 
15. i.e. which form the basis of diets.
16. For example, see analyses of the French Academy of Agriculture on the evolution of the average annual yield 
of wheat in France from 1815 to 2018 and on that of maize from 1960 to 2017.
17. See for example the Cirad press release of 29/04/2020 (https://www.cirad.fr/actualites/toutes-les-actualites/
communiques-de-presse/2020/pandemie-coronavirus-menace-agriculture-alimentation) and the analysis by 
the association les Greniers d’Abondance of 16/04/2020 (https://resiliencealimentaire.org/covid-19-qui-veille-
au-grain-pour-demain-lanalyse).

2.1

https://www.academie-agriculture.fr/publications/encyclopedie/reperes/evolution-du-rendement-moyen-annuel-du-ble-france-entiere-de-1815
https://www.academie-agriculture.fr/publications/encyclopedie/reperes/evolution-du-rendement-moyen-annuel-du-ble-france-entiere-de-1815
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again (FAO, 2017). However, certain levers and opportunities could potentially 
have a positive impact such as changing eating habits in developed countries, 
drastic reduction of losses and waste (FAO, 2019b), capacities for recycling and 
use of by-products/co-products and the improvement of production techniques 
and organisations in the agrifood system to increase its resilience and adaptive 
capacities. While these levers are probably within our reach, it is crucial to move 
forward on these issues very quickly.

Alongside these food security issues, the WHO has observed that 13% of adults 
worldwide are obese. This aspect of malnutrition is another critical issue for the 
agrifood system alongside the development of related chronic diseases (cancer, 
diabetes, cardiovascular events) through the production of ultra-processed 
foods that often have a very high sugar content. The same is true of the use 
of antibiotics as growth promoters in certain livestock farming models. These 
food-related health issues are the focus of growing attention (see, in France, the 
États généraux de l’alimentation and the Égalim Law18 in 2017-2018) and prompt 
a demand for healthy and sustainable food that is accessible to all and preferably 
local, agroecological and minimally processed.

     �There is an urgent need to reduce  
the negative environmental impacts  
of agriculture

The agricultural production system based on intensive farming has strongly 
contributed to the current collapse of biodiversity (Sánchez-Bayo and Wyckhuys, 
2019)19 and the reduction of soil fertility and water quality (Caquet et al., 2020). 
There is an urgent need to drastically reduce the use of phytosanitary products 
and mineral fertilisers and reconcile agriculture and the environment generally. 
In addition, we must rethink our interactions with “natural” ecosystems (wildlife, 
forest and pastoral biodiversity reserves), bearing in mind that “natural” does 
not mean excluding all human intervention and activity. It is just as essential to 
improve livestock welfare: animals should be considered as subjects that are both 
sentient and conscious, working in cooperation with the farmer, and no longer 
as mere objects with biological functions. Farm systems that respect the animal 
and ensure a good life and an acceptable death must be designed (Porcher, 2011). 

18. See issue 1566 (2017) of the Alim’agri magazine by the Ministry for Agriculture and Food, which summarises 
the various projects underway https://agriculture.gouv.fr/alimagri-les-etats-generaux-de-lalimentation.  
The Égalim Law (agriculture and food), which follows on from this work, was enacted in 2018.
19. In thirty years, almost 80% of insects have disappeared in Europe.

2.2
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The circulation of zoonoses (Covid-19 and other recent zoonoses such as H1N1) 
remind us of the porosity with regard to certain diseases between the animal – 
both wild and domestic – and human worlds. According to the OIE (International 
Organisation for Animal Health), more than 60% of human infectious diseases 
are zoonotic. This figure increases if we consider emerging infectious diseases 
(70%)20 interactions between animal, human and ecosystem health are leading 
to the concept of “One Health” (Gibbs, 2014; Zinsstag et al., 2015).   

Lastly, agriculture is the third largest source of greenhouse gas (GHG) emissions 
in France (19% of the national total in 2018) (CITEPA, 2018). Agricultural and forestry 
machinery only account for 12% of these emissions, while livestock farming accounts 
for 48% (mainly via methane emissions) and crops for 40% (mainly via nitrous oxide 
emissions during soil fertilisation). Between 1990 and 2018, agricultural emissions 
decreased by 8% (national GHG emissions increased by 6% in the same period). 
Transformations and efforts must therefore increase if the country is to meet 
France’s low-carbon strategy objectives21 and its commitments in the framework 
of the Paris Agreements. In this context, crops, forests, grasslands and pastoral 
land and corridors could be of great help as they play an important role in carbon 
storage.22 For example, the “4 pour 1000” (4 for 1000) project launched by INRAE 
aims to increase carbon storage in all the world’s agricultural soils by 0.4% every year 
(i.e. the equivalent of the world’s annual CO2 emissions linked to human activities)23 
by developing alternative cropping practices such as intermediate crops, intra-plot 
agroforestry and temporary grasslands in crop rotation.

     �Agricultural dynamics have favoured 
intensification and specialisation

Farming is part of sector chains in which agricultural production and processing 
models are designed and locked, but also transformed and invented. At all levels 
of the chain, the agrifood model imposes costly requirements for competitiveness 
and sanitary standards linked with processes and product logistics. These chains  
 
20. See https://www.oie.int/fr/pour-les-medias/une-seule-sante/
21. The 2018-2019 SNBC strategy aims to reduce emissions from the agricultural sector by 18% compared with 
2015 by 2030 and by 46% by 2050. It aims for a global reduction of greenhouse gas emissions by 40% by 2030 
(compared with 1990) and carbon neutrality, i.e. zero net emissions, by 2050.
22. For example, according to the ONF, forests store the equivalent of 15% of national GHG emissions.
23. The “4% sur les sols pour la sécurité alimentaire et le climat” initiative (4% on soils for food security and  
the climate) launched by France on the occasion of the Paris Climate Conference (COP-21), proposes to increase 
the carbon stock in the world’s soils by 0.4% per year. This figure is the result of a simple initial calculation, 
considering that total annual CO2 emissions from human activity currently account for the equivalent  
of 0.4% of the carbon stock (C) of the planet’s soils (approximately 2,400 gigatonnes of C). An annual storage  
of 4 per 1000 (4% or 0.4%) in the full depth of the soil would therefore compensate for these emissions.

2.3
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are part of sociotechnical regimes24 focused on competitiveness through pricing 
(as low as possible). This has been made possible by greater productivity of la-
bour through the substitution of the latter by capital (in the form of increasingly 
efficient machines and automated, climate-controlled buildings) and workforce 
competition, exacerbated by globalisation. This system is underpinned by the 
intensive use of increasingly sophisticated technology, which many users gradually 
rely on (agricultural machinery, biotechnology, pesticides, etc.). Among other things, 
this has led to a steady fall in agricultural employment in all OECD countries,  
including France25, and to the specialisation of a growing number of farms in 
a single type of production. Through the CAP (Common Agricultural Policy), 
purchasing organisations and oligopolistic multinationals, the organisation of 
this system, from the individual farm to the consumer, is driven by tensions and 
unbalanced power relations between actors with different and sometimes diver-
gent interests, contributing to lock-ins. Moreover, agricultural activity takes place 
in territories that have, in many cases, become specialised, leading for example 
to the spatial dissociation of livestock and crop production and the geographical 
concentration of sectors. All this forms a highly complex system characterised by 
the specialisation and interdependence of each element at the different levels, 
which demands very high levels of resources. This amplifies instabilities and 
multiplies the risk of failure. It is also an obstacle to change.  

     �What are the agricultural models  
of the future?  

The debate on which agricultural models would best respond to the present 
challenges is wide open, particularly since the rise in organic farming in France 
(which now accounts for 8% of the agricultural area) and the promotion of agro
ecology. These debates are not limited to the national framework but have taken 
on an international dimension. In 2016, the HLPE (High Level Panel of Experts) of 
the FAO proposed to address the future of agriculture (including livestock farming) 
according to two standard models: sustainable intensification and agroecology 
(HLPE, 2016). The first matches current trends to improve process efficiency 
and integration into long-chain systems. It is based on cutting-edge scientific 
knowledge and technological advances made possible by precision agriculture  
 
24. According to Geels (2002) and the “multi-level perspective” model: a regime is a network formed of different 
economic and social actors around a product, service or, in our case, an agricultural model. The stakeholders  
are private and cooperative actors from the chains, but the system can be strengthened by teaching, research, 
the farm advisory system, national or European policies, etc., whether deliberately or not.
25. In some areas of the world, particularly Africa, demographic dynamics and the limited opportunities  
offered by the industrial and service sectors mean that the creation of jobs in rural and peri-urban areas must 
be considered as part of the challenges facing agriculture. This also applies to some hinterland areas in France.

2.4
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and livestock production and genomics. The second standard model promotes 
agriculture based on natural processes and integration into local and sovereign 
food systems. It prioritises all forms of diversity (biodiversity, farming diversity 
and integration of cropping and livestock production), peer learning and the 
search for coherent systems that promote autonomy with regard to inputs and 
cost savings. Organic farming is one such approach (see insert on the Métabio 
metaprogram by INRAE). This model is increasingly supported by associations 
and local authorities who are developing territorial food projects and are strongly 
committed to promoting short supply chains. More detailed modelling has also 
been proposed. In particular, Therond et al. (2017) identify eight agricultural models 
positioned along two axes: dependence on inputs versus the implementation of 
ecosystem services; the territorial anchoring of food products versus long supply 
chains. 

The “INRAE METABIO” metaprogram launched in 2019 proposing the “change 
in scale of organic farming” looks to explore the hypothesis in which the 
majority of the national supply of products comes from organic farming, 
in a context of strong demand and agroecological transition. It studies 
the challenges, levers and consequences of the change in scale of organic 
farming throughout the agrifood system. The aim is to explore scientifically 
supported proposals to anticipate consequences and inform the deployment 
of organic agrifood systems.

Another debate on models revolves around the structural characteristics of 
farms that could provide a response to the challenges outlined above. Here, there 
is a marked difference between family farming and more capitalistic models, 
such as the corporate agriculture described by Gasselin et al. (2015) and Hervieu 
and Purseigle (2013). In the first case, capital and labour are in the hands of the 
family whereas in the second, capital is held by non-agricultural actors and all 
workers are employees. The latter situation prefigures the megafarm,26 which is 
underpinned by very high productivity made possible by extremely large-scale 
operations, mechanisation and, increasingly, adapted automation. 

There is some contrast between these two types of models, because agroeco-
logy is more family-based while sustainable intensification is more capital-based. 
However, the diversity of systems cannot be reduced to these archetypes. There 

26. The largest farm in the world is located in China with approximately 40,000 dairy cows; an even larger one 
(100,000 cows) is under construction… way beyond our controversial 1,000-cow farm!

For example…
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are also many hybrid situations of what is known as “agriculture of the middle”. In 
addition, the opposition between these two types in the societal or professional 
debate does not exclude forms of coexistence in the territories – which may be 
spatial or work-based (exchanges) – and the urban food supply chain. Whatever 
the model, farmers want a decent income and working conditions (Ghai, 2003), 
that is, conditions that protect their health, offer social protection and preserve 
their ability to influence their future. They also want work that is meaningful, 
useful, attractive and maintains relationships with others.

     �The territorial nature of agriculture
Another element to be positioned in the debate on agricultural models is 

the territorial nature of agriculture. The question of the territorial inclusion of 
the models addresses certain needs: the economic and social development of 
these territories, their increased resilience, their environmental quality and the 
availability of opportunities to integrate activities that use by-products in local 
applications. How can agricultural models reduce material and energy flows? 
At what scales should production and activities be relocated and rediversified? 
How can city-countryside relations, short chains and agriculture near cities meet 
these needs? What strategies and tools should be mobilised (geographical quality 
indications such as PDO, AOC27, etc.)? How can employment be promoted and 
sufficient economic value be ensured? These questions all position the territory 
(composed of its spaces, activities and actors) as an essential entity in addressing 
the challenges that agriculture must face, in particular through:

	• �the analysis of modes of coexistence and border sharing between agricultural 
models (Gasselin et al., 2021) in food systems;
	• �the design of processes for the agroecological transition at the territorial level 
(Bergez et al., 2019);
	• �the provision of information and decision-making tools for stakeholders, local 
authorities and government services concerned with the environmental and 
health dimensions that link agriculture to the other components of ecosystems, 
hydrosystems and pathosystems.

27. Appellation d’Origine Contrôlée.
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Conclusion
Agriculture is currently facing critical challenges in terms of food security, 

pollution and resources that call into question the productive dimensions of the 
activity and profession of the farmer. They raise questions about which agricul-
tural models could provide a response and about the territories themselves in 
which the concrete variations of these new models interact, contrast or coexist. 
It should be noted that they are subject to different dynamics, depending on the 
socio-technical regimes to which they are attached. Sustainable intensification 
is often associated with large farms with a small workforce and is linked to the 
evolution of the predominant regime inherited which relies on (large) private 
upstream and downstream companies, large cooperatives, advisory services from 
chambers of agriculture, the CAP and research leading to the prescription of 
technical solutions applicable in most environments. Agroecology is still a socio-
technical niche, but a real change in priorities has been observed among multiple 
actors, including in research, public policy making and education. Agroecology is 
also associated with the idea of transition and radical transformation. It calls for 
the development of knowledge, methods and tools exploring levers to enhance 
the coherence and performance of agroecological systems. It also accompanies 
processes of change and facilitates the exploration of desirable situations, learning, 
adapted mechanisations. It supports the step-by-step reconfiguration of systems 
in a context of incomplete knowledge and uncertainty about the impact of actions.

In this context, digital technologies are considered above all from the pers-
pective, for the precision of the information they provides and the new decision 
support regimes that they support. In this way, they can reverse the dynamics 
of simplified reasoning and actions brought about by the increase in farm’s size. 
By providing tools for observing and managing increasingly large areas, digital 
technology acts as a lever for sustainable intensification and the expansion of 
structures, which becomes compatible with precision and individualisation. At 
the same time, digital technologies could also contribute to the development of 
the agroecological model on family farms. Indeed, part of this model is based on 
dialogue and learning among peers and on direct links with consumers: forums, 
online stores and social networks could become effective tools. More digital 
technology could help understand and manage the biotechnical, ecological 
and socioeconomic complexity of systems based on agroecological farming,  
although this remains to be confirmed. It could also “equip” the farmer to detect 
malfunctions sooner and help decision making (decision “support” information).  
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The territorial level is also of interest from the digital perspective, due to the 
ability of digital technology to deal with complex processes connecting spaces, 
activities and actors and to explore useful scenarios for multi-actor decision 
making, whether this concerns food systems, environmental issues or, increasingly, 
health issues (infectious animal or zoonotic diseases) (Charrier et al., 2019).  

Ultimately, to allow a quick transformation capable of meeting the challenges, 
it is necessary to question the capacity of digital technologies to respond to the 
demands of the different actors and stakeholders (public or private) and their 
urgent needs for:

	• �information, understanding of the complexity of the systems, risks and 
uncertainties;
	• �support for the development of strategies and policies and the multi-criteria 
assessment of agricultural production/food system scenarios at different 
levels (European, national, regional and territorial);
	• �support for decision making and managing compromises in single and multi-
actor situations; 
	• �and lastly, support for the components of concrete action that link humans, 
machines and tasks on the one hand and experiential dialogue between peers 
on the other.

2_What are the challenges facing agriculture?
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Having described the different challenges facing agriculture in the previous 
chapter, in particular those of agroecology and sustainable food systems, 
which will be the “target” of our reflections, in this chapter we will address the 
foundational aspects of digital technology, their use in agriculture and current 
research. In the Introduction, we reviewed the pillars of digital agriculture, which 
can be summarised as data, processing capacities, connectivity to allow data and 
information exchange and, finally, automation. The challenges facing agriculture 
concern all levels of the data cycle, from capture to use via collection, traceability, 
processing, storage, interpretation, provision and application in automatic and 
robotic systems. 

     �Data
The use of digital technology in agriculture produces large volumes of highly 

heterogeneous data that can be qualified as “big data” (Bellon-Maurel et al., 
2018). It is uniquely complex because it includes observations of complex objects 
and environments of different natures and operating at very different spatio-
temporal levels (for example from the gene to the field), with strong intra- and 
inter-level interactions and involving numerous actors. This complexity leads to 
questions about what data to collect (nature, frequency, objective, etc.) to guide the  
deployment of a technical solution at all levels (hardware, software, interface, etc.).  

 Data capture (what, why, where and how) 

The challenges of data capture are both hardware- and software-related. 
Knowing what the data is intended for helps to determine the choice of mea-
surement equipment.  

First, the nature of the measurement (temperature, air or soil humidity, 
condition of a plant’s leaves, weight of an animal, etc.) and the accuracy required 
must be specified. These requirements, which depend on the needs defined, vary 
greatly from one use to another. The second issue is how to capture the data. The 
nature, size, weight, bulk and robustness of the sensor will also depend on the 
nature of the measurement, the object to which it is applied and the environment 
in which it will be placed: a sensor worn by an animal will be chosen according 
to the weight and bulk of the equipment and the size of the animal. Similarly, a 
sensor for field measurements on soil or plants will require protection to make 
it resistant to the surrounding environment (humidity, temperature variations, 
shock resistance, etc.). Finally, how the data will be used will define the sampling 
method, in particular the collection location and spatial and temporal resolution 
(Brun-Laguna et al., 2018). For example, should the sensors be positioned per m² 

3.1
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or per km²? If the aim is to monitor animals, should all or just a few of the animals 
in the herd be equipped (Jabbar et al., 2017)? What time frequency is required 
and should it be constant? Some applications require high spatial and temporal 
frequency, offered by satellite remote sensing. Others need less frequent mea-
surements, such as those obtained from participatory data (Minet et al., 2017). 

The decision of which technology and equipment to use and which 
methodologies to implement for the deployment of sensors has been the subject 
of numerous studies in recent decades, with applications in both cropping and 
livestock production: identification and geolocation using RFID (Ruiz-Garcia and 
Lunadei, 2011) or GPS; imagery (2D, 3D, infrared, hyperspectral), accelerometery, 
acoustics, biochemical measurements on fluids (including biomarkers), 
measurement robots such as weighing scales, water or milk meters, feed dispensers, 
etc. (Chastant-Maillard and Saint-Dizier, 2016; Halachmi et al., 2019). In most 
cases, trade-offs must be made between cost, resolution, precision and practicality 
(Foubert and Mitton, 2019). Research aims to limit these concessions, either by 
developing sensors that are increasingly precise, energy-efficient, smaller, less 
intrusive and less costly, or by designing massive data acquisition devices (using 
satellite images, drones, etc.). The deployment of new satellite constellations 
(Sentinel-2),28 which produce high-resolution images (both spatial and temporal) 
made available free of charge, offers new monitoring opportunities. 

In conclusion, the work to develop acquisition systems is inherently multidisci-
plinary and requires collaboration between agronomists, biologists, zootechnicians, 
geneticists, computer scientists, electronic engineers and end users to ensure 
that the requirements of users (who are sometimes researchers themselves in 
another field) are met and to combine knowledge of the objects of study, their 
specificities and their constraints with knowledge of digital technology.

28. https://sentinel.esa.int/web/sentinel/missions/sentinel-2



33

Several INRAE units are developing such acquisition devices for phenotyping 
or monitoring animals or crops. Examples include: a high-speed 3D image 
acquisition device and its associated processing methods to measure 
the physical condition and morphology of dairy cows, developed by the 
PEGASE Mixed Research Unit (UMR) in collaboration with the Agricultural 
Technical Institute IDELE and the company 3D Ouest. An automatic feeder 
has been developed by the PEAT Experimental Unit (UE) and the BOA UMR 
for studying the feed intake and individual feeding behaviour of poultry 
reared in groups. The electronic mounting detector “ALPHA” (the company 
Wallace), based on an automatic RFID reader worn by a ram, was designed 
by the SELMET UMR to automatically detect heat in sheep, particularly in 
large-scale farming. In the plant field, the ITAP UMR and the CAPTE Mixed 
Technology Unit (UMT) are developing optical sensors for phenotyping 
or early detection of plant diseases. The TETIS UMR uses satellite remote 
sensing to detect plot defects. The acquisition of phenotypic data using 
sensors is being addressed by large-scale programmes and infrastructures 
such as PHENOME on the characterisation of crops grown in greenhouses 
and in the field and IN SYLVA on forests. The resulting data can be used to 
improve the predictive capacities of models and how they take into account 
interactions between genotypes and the environment. More broadly, high-
speed phenotyping systems are also being developed in plant and animal 
experimental units at INRAE.

 Data collection and transmission (What data to send, when and how) 

Once the data has been acquired, it must be transmitted. Some systems use 
wired communication (Ethernet, serial, etc.), but this is not always possible and 
sensors have to be equipped for wireless communication, which poses different 
challenges. Data capture and transmission in agriculture increasingly use Internet 
of Things technology (Zhao et al., 2010), especially RFID and wireless sensor 
networks with specific features for agriculture.  

For example…
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Monitoring of animals in extensive breeding. © Selmet – CIRAD.

Most wireless sensors rely on energy sources that are either limited (e.g. 
batteries) and/or variable (e.g. via a solar collector) and must therefore be preserved. 
Data transmission is often the most energy-consuming factor and presents a 
major challenge, so the aim is to limit the amount of data sent while maintaining 
the data accuracy required for the application to function. Research therefore 
focuses on data processing in the sensor, which itself is limited in computing 
and memory capacity, using spatial and/or temporal data aggregation (Salim et 
al., 2020) and simplified artificial intelligence methods. For example, researchers 
use the correlation between two quantities (such as temperature and humidity) 
to transmit just one of the two values and interpret the second. Another option 
is to locally predict the next value to be measured and only transmit the data if 
it does not match the predicted value. The more demanding an application is in 
terms of temporal resolution or accuracy, the more data transfer is required. This 
also requires a trade-off between efficiency, accuracy and cost. 

For example…
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The FUN and EVA project-teams at Inria are working on data collection for 
agriculture using wireless sensor networks. Their work concerns both specific 
network protocols and the question of which data to transmit to avoid 
saturating the communication media and reduce the energy consumption 
of transmissions. The FUN project-team is installing sensors in vineyards 
in South Africa to improve watering and water management. They also 
collaborate with Sencrop, which uses sensors in cereal and potato farming. 
EVA installs sensors on peach trees in Argentina to protect against frost.  

The choice of communication technology depends on the quantity of data to be 
retrieved as well as the distance to cover and location of the sensors. For data to be 
collected over long distance and requiring greater intervals between transmission 
(such as once-a-day temperature readings) one would uses long-range technology 
with low data rate and power consumption, whereas high-frequency readings 
(such as animal video tracking) require high data rate. The measurement points 
may be located in areas not covered by cellular technology (such as 3G/4G/5G or 
LPWAN – Low Power Wide Area Network), which would require specific network  
mechanisms to be put in place such as routing (relaying information to the 
destination station). This must take account of the constraints and requirements 
of the applications and the material limitations and characteristics of existing radio 
technology (Foubert and Mitton, 2021) and the environment in which the sensors 
are deployed (Ferreira et al., 2020). An additional difficulty is the heterogeneity 
of technologies required that must to coexist and sometimes cooperate, as well 
as the more general challenges of the Internet of Things (IoT), addressed in the 
Inria White Paper on the Internet of Things.29

Lastly, mobile data collection solutions are emerging for blackspots, ranging 
from simplified solutions (portable data devices that can be carried in a rucksack, 
as in the case of the COWSHED project in Africa30) to high-tech solutions with  
“aerial” devices (drones or nanosatellites). The latter can collect data from 
thousands of connected objects at a low data rate (LoRa protocol) or high data 
rate (i.e. 100 kB per transmission) using a smaller number of terminals on the  
 
 
29. Scientific challenges of the Internet of Things. Inria White Paper. https://www.inria.fr/en/inria-white-paper-
internet-things-iot
30. https://hal.archives-ouvertes.fr/hal-03102190/document
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ground (around 100) (UHF protocol). Applications are developing in the field of 
agriculture, such as in Australia where farmers remotely monitor the level of 
irrigation tanks using nanosatellites.31

The Internet of Things (IoT) is the interconnection of the Internet with things, 
places and physical environments. The term refers to a growing number of 
objects that are connected to the Internet, allowing communication between 
the physical and digital aspects of our possessions. The IoT combines a wide 
range of technologies from simple RFID tags to mobile phone applications 
and wireless sensor networks. Radio communication technologies are diverse 
with different characteristics with regard to data rate, consumption, range, 
etc. Sensors can be equipped with microcontrollers with varying levels of 
power and energy consumption.  

 Data storage and exchange, traceability 

Once the data has been captured and transmitted, it can be used for a variety 
of purposes. Firstly, it can be stored and processed to extract knowledge, anticipate 
malfunctions, etc. This data can be very heterogeneous and of varying levels 
of quality. It can also have very different sampling rates due to it coming from 
different sources (physical sensors, “human” sensors or even simulation results) 
and can be very large in volume (many capture points, potentially high temporal 
frequency). Methods derived from multivariate data management and now big 
data offer a response to the challenges of volume, processing speed and the  
diversity of formats and sources (Bellon-Maurel et al., 2018). The prerequisite for 
successfully using this data is that it meets the guiding principles of “FAIR”, which 
are Findability, Accessibility, Interoperability and Reusability,32 with minimal human 
intervention. There is therefore a demand for a new generation of information 
systems adapted to agriculture in order to manage and structure this complex 
mass of data using the FAIR principles. Metadata and data must be well descri-
bed using semantic resources (ontology, taxonomy, thesaurus) to make them 
understandable and facilitate access via standardised protocols..

31. https://which-50.com/world-first-australian-iot-uses-satellites-to-monitor-farmers-tanks-rain-levels/
32. Wilkinson et al. The FAIR Guiding Principles for scientific data management and stewardship. Scientific 
Data 3, 160018. doi:10.1038/sdata.2016.18.
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At INRAE, automated data processing centres (CATI), federate and structure 
skills, methodologies and technologies to facilitate the reuse of data, such 
as the CATI SICPA (Information Systems and Computation for Animal 
Phenotyping), the CATI Codex (plant phenotyping) and the CATI GEDEOP 
(Management of Experimentation, Observation and Practice Data on Agro-
socioecosystems).

Finally, the question of data validation is becoming a central issue with the 
increase in the quantities of data collected: is the measured value correct, for 
what applications and under what conditions?

A variety of DBMS (Database Management Systems) exist depending on the data 
model used, with the relational model currently being the most common. Benchini 
et al. (2007), for example, coupled a dynamic cropping system simulation model 
with a relational database to achieve efficient storage and analysis of model data 
at farm level. But when it comes to dealing with very large volumes (of the order 
of petabytes) or complex and heterogeneous data (graphs, documents, etc.) in 
highly distributed contexts (remote servers, Internet of Things, etc.), NoSQL-type 
databases using a different data model – which has fewer conceptual constraints 
than the relational model – are more pertinent.

In some cases, the primary aim is to share the data among multiple actors, 
for example to limit fraud or validate certain processes (correctly following a 
given route, compliance with the cold chain, local production or insecticide-free 
requirements). To achieve this, one of the most promising digital tools currently 
available is the blockchain (Bermeo-Almeida et al., 2018). Blockchains, which use 
a distributed database that requires no control entity, date the components they 
contain and guarantee their unalterability. In agriculture, this technology makes 
it possible to record the life stages of a product and thus ensure traceability 
(Kamilaris et al., 2019). It offers multiple advantages (see Chapter 4: Opportunities) 
including transparency and records of transactions between farmers, suppliers, 
buyers, consumers etc. In some sectors, using blockchains makes it possible to 
avoid long and costly certification processes (Lin et al., 2017).  

However, blockchains also pose new digital and organisational challenges. In any 
information system, there is always an inherent risk of hacking. Also, blockchain 
technology was initially designed for transferring and sharing intangible goods 
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(funds, certificates, diplomas) and is not infallible in cases where information flows 
must be coupled with physical flows, such as in agriculture and agrifood where the 
digital data must be an exact representation of the physical flow. Furthermore, 
the perceived security of a blockchain is based on a mechanism known as “proof 
of work” (of computer operations), which validates the new blocks to be incorpo-
rated. Public blockchains rely on large numbers of “proofs of work”, which is very 
energy intensive, and research currently focuses on reducing the complexity of 
these cryptographic algorithms to reduce their energy consumption.  

     �Modelling, simulation and optimisation
If data is one of the driving forces of digital agriculture, modelling is also 

essential for linking measurements and observations to interpretations and 
recommendations to help actors in the agricultural sector better understand, 
manage and improve their production systems. 

In the field of agriculture and agronomic research, the scientific approach 
of modelling to predict harvests emerged as early on as the reign of Egyptian 
Pharaoh Sesostris I, when river levels were used to make crop forecasts (Gros de 
Beler, 1998), or among Inca farmers who knew several months in advance what 
agricultural cycles to expect by observing nature (Gutiérrez, 2008). Much later, 
the pioneering work of Mendel (Mendel, 1907) and then Fisher (Street, 1990) 
definitively legitimised the use of statistical models in the fields of genetics and 
agronomy. In the latter half of the 20th century, agricultural modelling developed 
in particular in rural economies to rationalise and optimise production, agronomy 
and zootechnics, crop management, animal nutrition and genetic selection in 
plants or animals. With the development of computers and the first calculators, 
modelling gradually went beyond statistics and operations research and increa-
singly used symbolic and algorithmic formalisms to produce models expressed 
in mathematical and computer terms and in which simulation plays a key role. 

The general function of a model is often called a mediation function: “to an 
observer B, an object A* is a model of an object A to the extent that B can use A* to 
answer questions that interest him about A” (Minsky, 1965). This mediation can help 
meet different cognitive objectives: facilitating experience, intelligible formulation, 
theorisation, communication and the coconstruction of knowledge, decision and 
action (Varenne and Silberstein, 2013). Today, agricultural modelling concerns a very 
broad spectrum of objects and has four main purposes: analysis, communication, 
predicting and controlling the evolution of various components in an agricultural 
system and designing and optimising the system under consideration. In the rest 
of this section, we will present a few of the major types of models and how they 
can be used in digital agriculture thanks to simulation and optimisation.

3.2
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 What to model, for what purposes and with which tools 

What to model? – In agriculture, the objects of study – or subjects of the 
model – are anthropised natural systems that can involve multiple scales and 
levels of organisation. Modelling focuses on the components of these systems 
as well as the processes that govern their dynamics, the events that activate or 
inhibit these processes and the exogenous factors that influence them (such as 
weather conditions) (Martin et al., 2011). Some of the components are biophysical 
(such as crops with growth processes, diseases) (Kumar and Sinhg, 2003) while 
others are centred on the roles played by human actors. In the latter case, mo-
delling can concern either a single individual (Martin-Clouaire and Rellier, 2004; 
2009) or a group of individuals (such as the members of a cooperative) and the 
social processes of activity coordination carried out by different individuals in 
the collective (Drewniak et al., 2013; Manson et al., 2016).

Models of processes, flows and interactions are being developed by many 
teams and units. Below are a few examples at different scales.
At INRAE, several teams are working on crop or livestock modelling, whether 
on a plot-by plot basis (multispecies crop models such as STICS, which describe 
growth according to climate and environmental variables), at the individual 
level (animal growth models according to their diet and environment), or 
at larger scales (plant epidemiology models including inter-plot dispersal 
and animal epidemiology models describing inter-herd transmissions, etc.). 
These models are hosted by modelling platforms such as RECORD, OPEN 
ALEA and OPEN FLUID and form the basis of simulations run according to 
different climate and contextual scenarios.

The STEEP project-team (Inria, CNRS, Université Grenoble Alpes) develops 
mathematical models for analysing material flows (production, transformation, 
exchanges, consumption, waste) in agriculture and the forestry-wood sector 
in order to 1) understand the upstream/downstream vulnerabilities in the 
sectors, 2) question the use of natural resources and potential problems 
caused by competition for use and, finally, 3) assess environmental impacts. 
The tools developed are based on the modelling of chains in terms of products 
and sectors and the existing flows between them. One of the major difficulties 
is the particularly patchy and inconsistent nature of the data.  

For example…
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The EASE project-team (Inria, Ecole Nationale Supérieure Mines-Télécom 
Atlantique Bretagne Pays de la Loire, Université de Rennes 1) is developing a 
complete series of new interaction models, offering tools for augmenting and 
describing information from complex systems. The work has been applied to 
energy management in agriculture. In particular, the model helps define how 
to reduce the environmental impact of energy consumption when optimising 
an existing site or installing new facilities. It has shown that the optimisation 
of a single parameter alone (local production, storage or process transfer) is 
not enough to maximise self-consumption and minimise energy requirements.

What purposes to model for? – The level of detail of the modelling systems 
at the heart of a study is defined by the purpose of the study and the tool under 
consideration. The most commonly applied objectives range from identifying the 
aims and means of managing agroecosystems to predicting performance (Rio 
et al., 2019) in the light of different scenarios going through the identification 
of risks and the critical analysis of the functioning and conduct of agricultural 
production systems (Li et al., 2019). Modelling can also allow the design of new 
systems such as the configuration and sizing of a logistics chain (Taghikhah et 
al., 2021). 

Many models concern agroecosystem management. The joint INRIA / 
INRAE project-team BIOCORE (CNRS, Sorbonne Université-UPMC) focuses 
on modelling and control in epidemiology for tropical agriculture. At INRAE, 
the MIAT UR and MISTEA UMR develop simulation models and optimisation 
methods for managing agroecosystems at farm level. For animals, UMRs 
such as BIOEPAR, SELMET, MoSAR, UMRH and PEGASE are developing 
models on animal health and epidemiology, dynamic ingestive, digestive 
and metabolic phenomena and livestock farming systems. For example, the 
PEGASE UMR has developed new models for adjusting daily feed according to 
the nutritional needs of each animal for individualised feeding for pregnant 
and lactating sows (Gauthier et al., 2019).

For example…

For example…
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Building an agronomic model. © INRAE.

How to model? – Computer modelling to support the analysis, design and 
management of agroecosystems is combined with approaches using either 
simulation or optimisation (Li et al., 2020). In dynamic simulation, the modelling 
of phenomena considered important for the objectives of the study is centred 
on realism (Kaghazchi et al., 2021), whereas optimisation involves algorithmic 
exploration of the space of alternatives that efficiently searches for an optimal 
solution according to one or more explicitly formulated criteria using reductionist 
mathematical models (Ezanno et al., 2020; Casagli et al., 2020). The two methods 
have relatively antagonistic objectives (modelling realism versus computational 
efficiency) and therefore generally use different modelling approaches.

 Representation frameworks 

Agroecosystems are complex objects of which the models concern, on the one 
hand, the functioning of the biophysical entities that compose them (soil, plants, 
animals, mineral and water flows, etc.) and, on the other hand, human decision 
making and action on these biophysical entities (Zabala et al., 2021). Models 
convey knowledge that mainly comes from scientific disciplines such as agronomy, 
zootechnics, environmental science, management science and the humanities.  

Biophysical models can be classified into three main fields: mechanistic, 
empirical and hybrid (Reyniers, 1996). Mechanistic modelling focuses on events, 
causal relationships and processes, whereas empirical models treat systems as 
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“black boxes” and only generally describe the underlying biophysical phenomena. 
These models represent the input-output dynamics of a system component in 
terms of observation data. In reality, there are few truly mechanistic or empirical 
models. Models are generally hybrids or classified in one or the other category 
according to whether they possess mainly mechanistic or empirical components. 
The overall understanding and level of information required to build these models 
increases as we move from empirical to mechanistic models. By making causality 
explicit, mechanistic models can be more complex, while empirical models are 
generally simpler but have a more limited scope of application due to statistical 
data availability issues.

Decision modelling varies depending on the modeller’s hypothesis about 
the decision maker. In a first type of hypothesis, the decision maker is assumed 
to be perfectly rational (in the economist’s sense) and, when making a decision, 
determines the mathematically optimal choice according to theoretically defined 
functions of utility. In a second type of hypothesis, known as a bounded rationality 
hypothesis, the agent makes a decision that leads to an outcome that they consider 
satisfactory given the information available and their level of aspiration. Mental 
models of varying levels of sophistication are often used, including models based 
on decision rules that associate situations with decisions or actions (Martin-
Clouaire, 2017). To facilitate and standardise the development of these models, 
ontologies can be used to define the concepts, relationships and other distinctions 
relevant to the areas concerned (major crops, livestock production, etc.) (Roussey 
et al., 2011). An ontology (see Section 3.4) is an abstract model (metamodel) of 
the area and provides the representation primitives allowing the instantiation 
of models for specific systems in the form of knowledge bases (Martin-Clouaire 
and Rellier, 2004; Fishwick, 2007).

An ontology defines a vocabulary and the semantic links between the elements 
of the vocabulary. The vocabulary is composed of names of concepts (or 
“classes”), which are types of entities known by the system and names of 
possible relationships (or “roles”) between these entities (for example, the 
relationship of “pest” links two “living organism”-type entities). The ontology 
is described in a logical computer language that expresses the representation 
of knowledge to different degrees of expression. It can range from a simple 
taxonomy (a set of concepts structured by progressive specialisation) to 
complex descriptions of vocabulary elements and their semantic links. The 
language used allows the implementation of automatic reasoning.

Definition
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Discrete event, discrete time and continuous time systems – A discrete event 
simulation model allows the representation of a dynamic system using variables 
whose evolution depends entirely on the occurrence of asynchronous events over 
time. One particular case is when the time progression is in fixed increments. 
The discrete event approach contrasts with (but does not oppose) the “system 
dynamics” approach in which the state of the system is modified continuously 
over time based on a set of differential equations defining the rates of change 
and state variables. In each of these different cases, researchers are interested in 
the representation of causal relations (i.e., for the biophysical aspect, mechanistic 
models). One of the best known formalisms is Discrete Event System Specification 
– DEVS (Zeigler et al., 2000), which is based on a generic framework allowing 
different adaptations to specific formalisms such as Petri nets, cellular automata 
and, more generally, models with fixed time intervals. Petri nets are a particularly  
popular mathematical formalism because of their ability to represent the  
synchronisation of processes running in parallel and offer possibilities for rigorous 
model analysis. A cellular automaton is built using a network of discrete cells and 
is well suited to representing spatial dynamics (such as the propagation of an 
infestation) and self-organising phenomena (such as the landscape dynamics of 
natural reforestation). Some formalisms such as statecharts (Léger and Naud, 
2009), timed automata (Hélias et al., 2008) and Petri nets (Guan et al., 2008) 
can also suit processes for verifying the behaviour of the model (e.g. to ensure 
that it cannot lock up) or its temporal properties.  

Automatic detection of mangoes by artificial intelligence from a smartphone photo. Hortsys.  
© Hortsys – CIRAD.
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Individual- or agent-based models – These models focus on systems that can 
be broken down into a set of entities (such as plants, animals, zones) that act or 
interact (Daudé, 2004; DeAngelis and Diaz, 2019). When combined with a cellular 
automaton-based approach, the individual-based approach allows the spatial 
representation and simulation of biophysical processes on a territory divided 
into plots. When the modelled entities acquire more elaborate cognitive and 
decision-making capacities (Bahri et al., 2020), we speak of agent models that 
allow, for example, simulation of the decision-making behaviour of a group of 
agents (such as farmers) operating in a given territory (Huber et al., 2018). Farm 
management has often been modelled using simple mechanisms for triggering 
decision-making rules associated with possible situations. With this approach, 
however, it has proved difficult to control the order in which rules are used and 
to maintain the rule base once it reaches a certain size. An improvement was 
introduced by the BDI (Belief, Desire, Intention) approach (Georgeff et al., 1970; 
Bratman, 1987), which makes it possible to model the process by which an agent 
makes decisions based on a perception of the current situation (Belief ), the  
declared objectives (Desire) and decisions on how to proceed toward the objectives 
(Intention). 

The INRAE-MIAT UR has developed several formalisms to represent and 
simulate the decision-making behaviour of farmers when managing their 
farms using the BDI approach, temporal planning and uncertainty in artificial 
intelligence. For example, Martin-Clouaire and Rellier address the problem of 
production management as one of coordinating a set of activities organised 
in flexible plans for which it is possible to simulate the implementation in 
a particular context (Martin-Clouaire and Rellier, 2009). For application 
examples in dairy farming see Martin et al. (2011) and Martin-Clouaire et 
al. (2016) in viticulture.  

Constraint-based models – Constraint-based models use varied range of 
formalisms that are mainly based on the concept of graphs modelling binary 
relationships between variables (Hurley et al., 2016). These relationships can 
model correlations and causal influences, whether deterministic or probabilistic, 
as in the case of Bayesian networks and Markov chains. These networks can also 
describe constraints between variables in terms of combinations of acceptable 
or unacceptable values, leading to a Constraint Satisfaction Problem (CSP) 

For example…
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(Moummadi et al., 2011). In a similar vein, linear programming methods are based 
on the optimisation of a linear combination of multiple variables connected by 
linear relationships called constraints (Maqrot et al., 2017).

At INRAE, the BAGAP UMR works on modelling the problem of dynamic crop 
allocation on a farm, based on the use of spatial and temporal constraints and 
the toolbar2 solver (Akplogan et al., 2013). For example, the team analysed 
the wooded countryside of the Charolais-Brionnais region to show the 
uniqueness of this landscape and its suitability for the different structures 
and functions of hedges. Thanks to this analysis, the countryside was added 
to the list of potential sites for submission to UNESCO for heritage protection.

 Modelling and simulation 

The primary advantage of modelling approaches is no doubt the ability to 
model and simulate complex behaviours in agricultural systems and, more broadly, 
socioecological systems such as agroecosystems (Peart and Curry, 1998). Models, 
especially agent-based ones, are often complex due to the number and heteroge-
neity of components and interactions and their sensitivity to variations affecting 
the systems. Their behaviour is difficult to study because the phenomena involved 
are non-linear with multiple discontinuities and feedback between levels of 
organisation and scales. Some of these models represent cognitive agents with 
bounded rationality behaviour. Numerous agricultural applications have been 
developed based on the CORMAS (Bommel et al., 2015) and GAMA (Taillandier 
et al., 2010) platforms, such as for studying water management, the reform of 
the Common Agricultural Policy, reducing the use of pesticides and developing 
organic farming.

At INRAE, the AGROECOLOGIE UMR coordinates the development of the 
MAELIA platform for the integrated modelling and evaluation of socio-
agroecological systems. It aims to produce knowledge on the structure, 
functioning and performance of these forms of agriculture at plot, countryside 
and/or territorial level.

For example…

For example…
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In practice, modelling-simulation approaches offer a variety of uses, ranging 
from laboratory analysis by scientists, decision support (Huber et al., 2018), 
real-time decision making by farmers or agricultural advisors and support 
for negotiations between stakeholders (e.g. support models for joint water 
management in a territory) to the co-design of new production systems by a 
group of farmers and training. Individual or groups of farmers can thus improve 
their understanding of biophysical functioning and obtain ideas for improving 
the system studied in terms of product quality, system vulnerability, environ-
mental consequences of the practices implemented, reduction of work overload 
and drudgery and, finally, economic performance linked to the application of 
agroecological principles.

At INRAE, skills are grouped in CATIs for modelling large-scale systems, such 
as the IMOTEP CATI (Information, Models and Data Processing in Epidemiology 
and Population Dynamics) and the IUMAN CATI (Computerisation and Use 
of Models for Digital Agroecosystems). The work covers both modelling of 
the spread of epidemics in plants or animals and software development for 
platforms and proofs of concept allowing the sharing and computerisation 
of these new models at multiple scales.  

 Modelling and optimisation 

By definition, optimisation explores possible solutions to a given problem using 
different methods to find an optimum or optima according to a criterion or set 
of criteria (Zelinka et al., 2013). It is used in different areas of agriculture and at 
different scales (Plà-Aragonés, 2015). At the farm level, optimisation is implemented 
either explicitly or implicitly, whether in feed formulation, herd management, 
animal slaughter planning, crop and land use planning or water management. 
It is also used at different scales, including groups of farms, territories, regions 
and countries, for managing land use, water and economic trade and market 
issues (Carpentier et al., 2015). In these cases, bioeconomic models are employed 
according to an analytical approach, in which the primary objective is to evaluate 
the impact of the applying constraints and criteria to optimal solutions.

Due to the complexity of agricultural systems and changes in questions relating 
to agriculture, optimisation has also evolved in agriculture (Jones et al., 2016). The 
early economic models of the 1950s focussed above all on maximising income. 

For example…
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Today, the formulation of low-cost feed still primarily aims to obtain the cheapest 
feed possible while meeting nutritional criteria. Optimisation has gradually 
become multi-objective to combine different aims: productive (e.g. animal or 
plant production, working time), economic (e.g. income, cost) or environmental 
(nutrient levels, environmental impact calculated by life cycle analysis, ecosystem 
services, etc.). In “constrained” optimisations, the constraints are also varied and can 
be biological, structural, regulatory, environmental or linked to decision-making.

Model optimisation in agriculture has also benefited from developments 
in optimisation methods, using a diverse range of methods. Deterministic 
linear programming methods are still very common, with adaptations to solve 
multi-objective problems. Stochastic metaheuristic methods are applied alone 
or in combination with the previous ones. These metaheuristic methods make 
it possible to address multicriteria optimisation and obtain a set of optimal 
solutions considered admissible in the context (called Pareto Front); they include, 
for example, evolutionary algorithms (such as genetic algorithms or differential 
evolution) that work on a population of solutions, particle swarm optimisation, 
taboo search, simulated annealing, etc.(Kaim et al., 2018; Memmah et al., 2015). 

Current issues surrounding optimisation concern, in particular, how to adapt 
methods to increasingly complex models, and in particular how to take account 
of uncertainty (Crespo et al., 2010) and the temporal aspect in the formulation 
of the optimisation problem (Akplogan et al., 2013). These issues echo those 
traditionally addressed in the automatic control and optimal control community. 
Another major topic of research is the coupling between optimisation and simu-
lation (Borodin, 2014), in particular in connection with reinforcement learning 
methods (Gosavi, 2015). Despite technological advances in computing power, 
the processing time of optimisation processes is still an important factor to be 
considered due to the increasing complexity of the models in question. Recent 
developments in metamodelling offer a possible simplification strategy to reduce 
these processing times.

At INRAE, the PEGASE and SMART-LERECO UMRs develop multi-criteria 
optimisation approaches (zootechnical and economic performance, 
environmental impact) for feeding strategies in pig farming, based on a 
pig farm model. 
At Inria, there are more than twenty project-teams working on the 
development of optimisation, operational research or control algorithms.

For example…
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     �Multi-scale learning and knowledge 
extraction

The two previous subchapters presented the approaches used to collect 
data, followed by modelling techniques based mainly on human analysis. In this 
subchapter, we will focus on the main families of approaches to building models 
directly from data and thereby automatically extracting knowledge. The resultant 
knowledge can either be presented to human experts or remain within a learning 
context for prediction or identification tasks, for example. 

We will first show that the “raw” data sent by the sensors cannot generally be 
used in its initial state and that its pre-processing represents a challenge in itself. 
Let’s start by presenting the types of data frequently used in digital agriculture, 
and which could constitute a Big Data. 

 Massive data in agriculture 

In agriculture, the most “massive” data comes from sensors with high temporal 
or spatial resolution, such as time series and remote sensing or mapping data 
from embedded sensors. 

Time series – A time series is a sequence of numerical values representing 
the evolution of a variable measured on an individual over time. Such sequences 
of variables can be modelled individually to understand their past evolution 
and predict future behaviour using ARMA-type models (Box et al., 2015). Today, 
experiments in agronomy make it possible to observe the same variable on 
thousands of individuals (e.g. leaf area on thousands of plants in a greenhouse, 
the temperature of livestock) over long periods. The aim of analysing these time 
series has therefore evolved toward the search for common characteristics between 
series, major differences or the acquisition of more detailed knowledge about 
the internal (e.g. effect of genotypes) or external (e.g. linked to environmental 
variables) mechanisms that influence the observed variables. Time series are 
thus studied more generally as functions of time. Their data is also known as 
“functional” or “longitudinal” data.  

Remote sensing data – Remote sensing data can be images of a given area, 
taken by satellite or by drones. Satellite images – which we will focus on next – can 
be recorded at different periods, these sequences constituting time series. They can 
also, for the same period, be taken from different satellites, each with a different 
radiometric content (i.e. radar information, optical information). Thanks to recent 
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space missions such as Copernicus, plant dynamics can now be monitored with 
a spatial resolution compatible with the size of the objects of interest and short 
revisit time intervals. The Sentinel-1 satellite mission acquires radar information 
(two bands) every five or six days over the same area at a spatial resolution of ten 
metres. This source of data provides access to information on the structure of 
objects (i.e. forest or agricultural biomass) and makes it possible to monitor and 
assess wetland areas and the area of land that has been irrigated over a certain 
period. Another equally interesting satellite mission is Sentinel-2, which provides 
multispectral imaging information (thirteen bands), again delivered every five or 
six days and at a spatial resolution of ten metres. This optical sensor is particularly 
suitable for mapping land cover and land use, monitoring the biodiversity of natural 
states and for large-scale yield estimation over large areas (Lambert et al., 2018).    

At the other end of the scale, at the microscopic level, metabarcoding33  
metaomic data allows a better characterisation of the biological environment of 
crops or animals. This metadata is constructed by assembling the “fingerprints” of 
the genomes present or of their expressions (RNA, proteins), making it possible to 
analyse new dimensions of ecosystems, which can better explain the behaviour of 
crops or animals. We are still only at the beginning of exploring these new data 
sources, some of which remaining difficult to access (proteomics, metabolomics, etc.).

 Data pre-processing 

The major challenges in data pre-processing are: i) identifying outliers or 
unreliable data: data collected during experiments or in the field is voluminous, 
very noisy and can be affected by errors from a variety of causes, such as a faulty 
sensor. Specific tools are therefore needed to annotate this data, rapidly detect 
faulty sensors and diagnose heterogeneity in the field or greenhouse to improve the 
quality of the data sets for future analyses; ii) linking data with expert knowledge, 
such as mimicking an expert’s reasoning by an automaton when validating a 
“small” data set, or using the expert’s knowledge to adjust curves (alignment of 
phenological stage dates).

One particular challenge is data fusion. Information that is difficult to 
obtain directly can be retrieved by combining data, whether of the same type 
(for example, the leaf area of a plant can be predicted from the analysis of  
 
33. Metabarcoding is a method of identifying species from DNA or RNA segments. Instead of targeting  
different species, metabarcoding determines the composition of species in a sample, thereby allowing  
the identification of many taxa in an assembly of populations (of bacteria or other microorganisms)  
within an environmental sample (e.g. soil sample, sediment, excrements, etc.). It is thus one of the fastest  
methods for the environmental assessment of the biodiversity of ecological systems with a high number  
of unknown or difficult-to-identify species.
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fifteen images of this plant taken from different angles), or of different types. 
To do so, i.e. to monitor the same phenomenon or the same study area, an ever 
greater volume of heterogenous data of various types (called “multisource” data) 
is collected. The knowledge contained within this data is a real opportunity for 
improving our understanding of the complex phenomena associated with modern 
agricultural practices in order to better monitor and manage them. Within this 
general framework, one of the main challenges today is knowing how to make 
the best use of these heterogeneous and complementary sources of informa-
tion to obtain the maximum amount of information (because, in the science 
of complexity, “the whole is greater than the sum of its parts”34). Depending 
on the typology of the sources involved in the process, two merging strategies 
can be used: early and late merging. In the first case, the data is combined at 
the beginning of the process to form a single new homogeneous dataset. This 
can be done, for example, by bringing all the available information to the same 
spatial or temporal resolution or unit of analysis. In this context, once the new 
dataset has been built, standard single-source analysis techniques can be used. 
In the second case (late merging), an analysis process is set up by each source 
specifically and the merge is carried out at the descriptor or decision-making 
level. For example, specific descriptors can be extracted from each source and 
then combined to exploit higher-level interactions between the different sources 
considered. Lastly, the different sources can be combined in what is known as 
an “end-to-end” process, in which the standard processing stages are replaced 
by a single system (usually a deep neural network) that takes the raw sources as 
input and returns the required decisions as output (Charvat et al., 2018; Plaisant, 
2004; Tonda et al., 2018).

In the case of time series, merging series with different temporal resolutions is 
a major challenge, for example if the activity sensor in a collar worn by an animal 
sends information every five minutes, but the animal is only weighed once a 
day. In order to compare individuals, it may be necessary to interpolate the time 
series for the same time period (using linear or polynomial smoothing methods), 
possibly by matching similarities (dates of phenological stages, growth peaks, etc.). 
Dynamic Time Warping (Sakoe et al., 1978) is one of the well-known techniques 
for measuring similarities between two series. However, this technique does not 
provide answers to all the curve alignment issues encountered when dealing with 
living beings, when it is essential to take phenological time into account. These 
questions present challenges that are still largely unresolved in biology. 

34. http://www.scilogs.fr/complexites/le-tout-est-il-plus-que-la-somme-des-parties/
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There are also methods able to extract several models from time series at 
different time scales and then select the most relevant ones using information  
theory approaches (principle of Minimum Description Length – MDL) (Vespier et 
al., 2012). The advantage of these approaches is that they allow us to focus on the 
temporal scale of the observed phenomena instead of the technical sampling value.

In the case of remote-sensing, with the explosion in the number of satellite 
missions (Sentinel, Spot, Pleiades and PleiadesNeo, PlanetScope, etc.), it is now 
possible to collect information describing a single study area at a lower cost in 
different spectral ranges (optical and radar) and at different spatiotemporal scales. 
This massive volume of multisource information requires new data management 
and analysis tools to be developed (Schmitt and Zhu, 2016). Typically, in a classical 
multisource fusion process for Earth observation data, sources are exploited 
through an early fusion process. For example, in the case of imagery at different 
spatial scales, a resampling stage is incorporated to bring all the images to the 
same spatial scale beforehand. Unfortunately, this type of process can introduce 
bias or error by generating new synthetic information. This is why late fusion 
approaches are now preferred wherever possible. Early examples in the context 
of land use mapping are starting to appear but we are still far from a generic 
solution that can be deployed systematically across different territories and 
adapted to different agricultural practices. 

At INRAE, the MISCA team of the TETIS UMR develop information management 
methods to meet the major societal challenges related to the environment, 
whether storing, managing, sharing or analysing large volumes of data. 
In particular, it contributes to soil mapping by applying Deep Learning 
techniques on very large datasets. 

At Inria, several project-teams (GEOSTAT, TITANE, FLUMINANCE (Inria, INRAE, 
Université de Rennes 1), etc.) and the exploratory action AYANA are working 
on the analysis of satellite images.  
 

In addition to purely satellite-based multisource information, other types of 
information are now combined with Earth observation data. For example, “spon-
taneous” geolocation information or information from citizen science (Ienco et 
al., 2019) have much to offer to improve calibration and complement the purely 
physical information from satellite sensors. 

For example…
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 Supervised approaches 

Supervised analysis consists mainly of two tasks: supervised classification and 
prediction of future values. Supervised classification consists in assigning, for a 
given time series and set of predetermined classes (e.g. “sick animal” and “healthy 
animal”), one of these classes to the time series. In practical terms, this can help 
determine the condition of an animal or plant from sensor data and information 
on the different conditions possible. Supervised classification methods need to 
be “trained”; to do this, they must be provided with a large number of correctly 
labelled examples indicating their class. Using these examples, the classification 
algorithm builds one (or more) model(s), to assign a class to an unlabelled time 
series according to its characteristics. The main differences between the major 
families of supervised classification approaches lie in the way the models are 
built. The simplest approaches, known as k-Nearest Neighbor (kNN), do not build  
a model but search for the k examples of the training set closest to the individual 
to be labelled, and return the majority label. The difficulty lies in choosing a 
suitable similarity method (Karlsson et al., 2016).

Finally, the very popular deep neural network methods can also be used to 
classify such data. The most successful method of this type is currently MLSTM-
FCN (Karim et al., 2019), which combines a convolutional CNN (Convolutional 
Neural Network) block with a LSTM (Long Short Term Memory) block. The CNN 
block, widely used in image analysis, serves as a filter that traverses the time series 
or spectrum and extracts characteristic attributes at time t. It is combined with 
the LSTM block, which is widely used in the analysis of sequential data (especially 
text), and allows connections between past and present values to be made. This 
type of approach can produce excellent results (Kamilaris and Prenafeta-Boldú, 
2018). However, it requires an even greater volume of labelled training data (which 
can be difficult to acquire in some agronomic contexts), and its parameters can 
be tricky to define (Zhu et al., 2017).. 

At Inria, the STATIFY project-team (Inria, CNRS, Institut Polytechnique de 
Grenoble) focuses on the statistical modelling of systems involving complex-
structure data. The team develops statistical methods for capturing the 
variability of the systems studied while ensuring a good level of precision and 
taking into account extreme values that generally reflect rare phenomena. 
In particular, they model weather events for agroecology.  

For example…
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An example of the use of supervised classification methods in agriculture can 
be found in Fauvel et al. (2019), in which the authors work with precision breeding 
sensor data from dairy cows. The cows are equipped with thermometers and collars 
with an accelerometer. The time series of temperature and physical activity are 
analysed to allow more accurate oestrus detection than with existing methods 
or visual observation, even in the frequent cases where cows do not express any 
particular behaviour in the pre-oestrus phase (30%).  

 Unsupervised approaches 

Unsupervised approaches are used to reveal certain structures in data, whether 
groupings with clustering or recurring patterns with pattern mining.  

Clustering – The aim of the clustering (or unsupervised classification) learning 
method is to identify relevant classes in the data. Data is grouped by similarity 
or proximity within each class. To achieve a good classification, it is necessary to 
minimise the intra-class inertia (to obtain homogeneous classes) and maximise 
the inter-class inertia (to obtain well differentiated classes). Two main families of 
methods are commonly used: i) hierarchical ascending classification (HAC), which 
seeks to group individuals iteratively, starting at the bottom (the two closest) and 
gradually building a tree, or dendrogram, to finally group all the individuals into 
a single class, at the root; ii) classification by dynamic reallocation (the k-means 
algorithm is a well-known example of this). The number k of classes is fixed a 
priori. After initialising k class centres, all individuals are assigned to the class 
whose centre is closest in the sense of the chosen distance. The algorithm then 
calculates the barycenters of these classes which become the new centres. The 
process (assignment of each individual to a centre, determination of the centres) 
is iterated until convergence to a fixed (local) minimum or maximum number 
of iterations. 

The main issues to overcome when clustering multivariate data are identifying 
the “right” number of classes and defining a distance that is adapted to the data, 
sometimes implying the need to reduce the dimension. One common technique 
involves performing principal component analysis on the data and then apply 
clustering on the coordinates of the data in the eigenbasis, with all the difficul-
ties of choosing dimensions that this entails. Clustering by combining Dirichlet 
processes (Coquet et al., 2002) offers a way to get around these difficulties.

3_Foundations and state of play
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Patterns mining – Patterns correspond to implied regularities/irregularities 
or specificities of the data or subparts of the data. In agronomic applications, an 
individual can be described through a sequence of characteristics or events. For 
example, a plot can be described by a sequence of cultivation operations, a plant 
can be described by a DNA sequence, etc. one of the major challenges with this 
type of data is the extraction of frequent or rare subsequences.  

At INRAE, the TETIS UMR focuses on extracting frequent/rare subsequences 
in this type of data and frequent patterns in the form of items and sequences 
(sequences of events ordered in time) in order to characterise the difference in 
vegetation growth between different spatial areas. Their work is particularly 
relevant for wetland area estimation and biodiversity monitoring.  

Other approaches aim to highlight sub-parts of the data with very different 
characteristics to the rest of the data (distribution differences for certain 
attributes, etc.). For example, in Millot et al. (2020), the authors use the notion 
of discriminating patterns to characterise, from simulation data, sub-families of 
crop protocols in urban farms where part of the attributes (temperature, light, CO2, 
etc.) show an interesting distribution with respect to a given measure of interest. 

Unfortunately, these methods are often faced with a number of patterns that 
prove to be too large to be easily used by experts. A promising and currently much 
studied avenue is the selection of the most relevant pattern subset. Patterns can 
be extracted from time series after a pre-processing phase in which the sequence 
of numerical values is transformed into a sequence of symbolic values, allowing 
classical pattern discovery methods to then be applied. When the numerical 
data is kept, methods for extracting representative subsets, called “shapelets”, 
can be used..

INRAE units such as the PEGASE UMR, UMRH, the Toxalim UMR and the 
GenPhyse UMR use these different learning approaches for precision feeding, 
early detection of anomalies in the activity of dairy cows in a herd, detection 
of pathologies in piglets or analysis of sow behaviour respectively.  

For example…
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 Reinforcement learning 

Like many types of data, agricultural data is often uncertain (see 3.1). 
Reinforcement Learning (RL) is concerned with learning to operate in an uncertain 
environment. One example of a modern use of RL for crop management planning 
is Déciblé (Chatelin et al., 2005), originating from Garcia (1999) and based on 
interaction using a decision rule model for wheat cultivation. This empirical crop 
simulator is used to evaluate policies expressed as sets of decision rules. In Ndiaye 
(1999), model-free methods – namely Q-learning and R-learning – are mixed 
with genetic algorithms, decision trees and fuzzy logic to find optimal decision 
rules for crop management coupled with Déciblé. The result was considered to 
be not as good as the decisions that an expert would expect to see. These early 
approaches were interesting in that they introduced modern RL techniques for 
crop management while considering a range of actions. They also expressed an 
optimised policy in a natural way, i.e. in the form of a set of simple decision rules 
corresponding to farmers’ reasoning. However, the solutions in Garcia (1999) and 
Ndiaye (1999) are limited in that learning is offline, using an empirical decision 
model simulator with its own biases and field of validity. Because learning is not 
in real time, the systems do not use farmers’ feedback to improve the policy 
learned from the simulator.

These methods were later applied in a more complex context, incorporating an 
economic model for oilseed rape management and a pest and disease component 
in crop modelling (Trépos et al., 2014). RL methods have been successfully applied 
in irrigation planning when water availability is limited (Bergez et al., 2001). 
Nevertheless, each management decision must take into account the whole 
sequence of choices. Different crop varieties have different water requirements, 
so there will be different irrigation costs. Bu and Wang (2019), proposed a general 
computer architecture for intelligent decision making in agriculture based on 
deep Q-Learning. In practice, deep Q-Learning requires billions of instances of 
trial and error. Furthermore, no proposal has been made to integrate specialist 
knowledge (e.g. knowledge of plant physiology) into this system; approaches 
using expert knowledge could therefore be considered (model-based learning), 
allowing the amount of examples needed for training to be reduced by several 
orders of magnitude.

3_Foundations and state of play



56

The SCOOL project-team (Inria, CNRS, Université de Lille) specialises in 
reinforcement learning and is studying the recommendation of practices 
in agriculture for very small farms, especially in developing countries, 
and in gardening. The research is carried out with a focus on sustainable 
development.

Different machine learning and data science methods are implemented in 
the scikit-learn library, which was principally developed at Inria and is one 
of the three most downloaded artificial intelligence libraries in the world.

The INRAE MIAT unit is also working on the development of methods based 
on Markov decision processes and reinforcement learning applied to the 
management of agroecological systems, with particular focus on issues 
related to the spatial dimension of problems.

 Data warehouses and OLAP analysis  

Data warehouses (DWs) were designed to handle very large volumes of data from 
heterogeneous sources (Chandra and Gupta, 2018). Multidimensional modelling 
(where data is characterised across multiple axes of analysis) and hierarchical 
modelling (where an axis of analysis can be associated with different levels of 
granularity) form the basis of DWs and multidimensional analysis. For example, 
the analysis of the amount of pesticides or nitrogen used by farmers can be cha-
racterised according to several dimensions (or axes of analysis): temporal, spatial 
and at crop level (Bouadi et al., 2017). This allows quantities to be represented by 
crop type, season and plot. These dimensions can be expressed in different levels of 
detail. For example, spatial information can be defined at the scale of a single plot 
or at a larger scale such as the watershed, region, etc., since each plot belongs to a 
watershed, which in turn belongs to a region, which in turn belongs to a country. 

Multidimensional analysis uses OLAP (On-Line Analytical Processing) to 
aggregate, visualise and interactively explore data. If we take the previous example, 
we could analyse the quantity of pesticides or nitrogen at plot level or at a more 
aggregated level of spatial dimension such as the watershed. OLAP processing is 
used to navigate between different granularities of one or more dimensions in a 
very efficient way (i .e. navigation is instantaneous). 

For example…
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Users can use the data warehouse by combining the different dimensions 
and different levels of granularity of the corresponding hierarchies. To select 
the appropriate data at the right scale, users express and submit queries to the 
data warehouse. 

Other works (Palpanas, 2000) describe the coupling of multidimensional 
analysis with data mining methods (e.g. pattern mining), with the aim of proposing 
hybrid methods that combine the exploratory and analytical capacities of OLAP 
with the descriptive capacities of data mining. For example, the ADSS-OLAP tool 
(Abdullah and Hussain, 2006) combines OLAP and data mining (clustering) and 
was developed to analyse the impact of mealy bug on cotton crops. To further 
enhance OLAP analysis and allow geographic data mining, the idea emerged to 
couple OLAP and GIS (Geographic Information System) technologies. Thus, the new 
concept of Spatial-OLAP (SOLAP) (Bédard et al., 2007) was introduced to jointly 
exploit OLAP tools (decision, graphs, etc.) and geographic tools (cartographic 
representation, geographic aggregators, etc.).  

At Inria, the LACODAM project-team (Inria, Institut national des sciences 
appliquées de Rennes, Institut national supérieur des sciences agronomiques, 
agroalimentaires, horticoles et du paysage, Université de Rennes 1) has 
modelled and built a data warehouse to analyse/explore, in space and time, 
the effects of agricultural practices on nitrogen emissions to water and 
the air (Bouadi et al., 2017). The team is also studying the use of machine 
learning to improve animal welfare (dairy cow health and sow feeding).

At INRAE, the TSCF unit focuses on spatial OLAP. Among other things, it 
contributes to storing and analysing biodiversity data online, in particular 
through the VGI4BIO project (www.vgi4bio.fr) which proposes methods for 
analysing biodiversity indicators in an agricultural context centred around 
data and VGI users. 

For example…
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Optidose® a tool to adapt the dose according to the parameters of the crop and the epidemic risk. 
© Le Mas Numérique.

     �Knowledge management and engineering 
for decision support in agriculture 

The previous sections provided an overview of the state of the art in data 
collection, management and processing; we also saw how modelling makes it pos-
sible to manage and represent knowledge in a mathematical way using measure-
ments and observations to help with interpretation and recommendation. Another 
important facet of digital agriculture is knowledge management, i.e. higher-level 
information including both general scientific knowledge (e.g. plant or animal 
physiological processes) and methods specific to certain actors in the agricultural  
sector (e.g. a livestock farmer’s herd management, methodology for making 
certain cheeses, etc.). In recent years, significant effort has been made to formalise 
this knowledge and organise it in ontologies that provide a structured access. 
Ontologies are a component of computer systems that help users accomplish a 
task. This assistance can take many forms, from automating an irrigation decision 
to finding information to help make a decision. Knowledge can also be generated 
by the analyses presented above. In this case, the difficulty lies in presenting these 
analyses to human actors in the most intelligible way. Again, recent developments 
in data analysis are of particular interest to agriculture, whether via visualisation 
approaches or methods for interpreting learning models. Lastly, the aim of 
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everything presented in this section is to enable human actors to make better 
decisions. Specific tools known as DSS (Decision Support Systems) that use all or 
some of the techniques presented in this chapter are available to these actors and 
are constantly evolving. This section will conclude with an overview of these tools.  

The BIOEPAR UMR contributed to the development of EMULSION, an open 
source program and DSS based on artificial intelligence. EMULSION allows 
modellers to develop stochastic mechanistic models of complex systems in 
epidemiology at different scales and using different paradigms, while reducing 
the amount of computer code that has to be written (Picault et al., 2019). 
Based on this, the ATOM (Automation of decision support Tools based On 
epidemiological Models) project aims to develop a process for industrialising 
the DSS generation using mechanistic epidemiological models (https://
www6.angers-nantes.inrae.fr/bioepar/Recherche/Projets-en-cours/ATOM).

 Knowledge-based systems in agriculture 

From the first expert systems to knowledge-based systems – The first expert 
systems emerged in the 1970s as a result of research in artificial intelligence. These 
systems were dedicated to resolving a specific problem by using the knowledge 
of one or more experts and mimicking their reasoning, with the ultimate aim of 
replacing them. In one approach, called the symbolic approach, expert knowledge is 
formalised using a knowledge representation language based on logical reasoning. 
This is in contrast to the connectionist approach, which mimics the functioning 
of the human brain using neural networks.  

One particularity of the agricultural sector is that the inherent problems in 
crop or herd management require expert knowledge in several fields (soil science, 
meteorology, chemistry, biology, etc.). To meet this demand for multidisciplinary 
expertise, some expert systems incorporate simulation models as components, 
such as those described in Section 3.2. Such an example is the expert system 
“CrOp MAnagement EXpert” (COMAX), dedicated to cotton cultivation, which aims 
to maximise yields while minimising inputs (McKinion and Lemmon, 1985) and 
encapsulates a simulation model of cotton development (GOSSYM). Because the 
acquisition of expert knowledge is crucial for the development of expert systems, 
knowledge engineering has focused on methods for acquiring such knowledge. 
These methods have been used to guide cognitive scientists through the complex 
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tasks of identifying, extracting and formalising expert knowledge from a variety 
of sources (expert interviews or other documents describing the task of solving 
the problem).  

Very popular in the 1980s, expert systems have also been severely criticised 
for not being adaptable to applications other than the one they were designed 
for and for offering poor potential for development. In the 1990s, expert systems 
gradually evolved into knowledge-based systems. The notion of ontology then 
appeared in computer science. Ontologies are designed to formalise consensual 
and relatively stable knowledge in a given domain to allow it to be reused in other 
knowledge-based systems. 

A knowledge-based system is composed of two distinct parts: firstly, a 
knowledge base including an ontology that structures the knowledge from 
the domain, with a fact base that instantiates the ontology to describe specific 
situations and sometimes a rule base that enriches the ontology; secondly, a 
reasoning engine associated with the knowledge representation language but 
independent of any particular knowledge base.  

Evolution of knowledge acquisition and capitalisation methods – The shift toward 
knowledge-based systems was accompanied by a change in the conception of the 
relationship between humans and machines. Knowledge-based systems and their 
associated intelligent computer system aim to cooperate with the user to help 
them perform a task requiring different types of knowledge by supplementing 
the user’s knowledge, revealing the consequences of their choices and proposing 
alternative options to those they would have imagined. Knowledge engineering 
then evolved into a form of knowledge modelling mediation, producing “knowledge 
models” – a model here taking on a different and more global meaning than in 
Section 3.2 since it no longer represents phenomena but knowledge. These models 
allow the cognitive scientist, in charge of implementation in a computer system, 
to dialogue with experts to enrich and validate the knowledge to be represented. 
To help this mediation, several methods have been developed, the best known 
being “Knowledge Acquisition and Documentation Structuring” (KADS, from which 
commonKADS was later developed). For example, a system for recommending 
irrigation dates for mango trees was developed using the commonKADS method 
(Nada et al., 2014). 
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The GRAPHIK project-team (Inria, INRAE, CNRS and Université de Montpellier) 
studies knowledge representation. Among other things, the team is working on 
a method for collecting, modelling and formalising knowledge to improve the 
quality of local cheeses. Data collection is carried out through questionnaires; 
modelling is done by creating mind maps to facilitate validation by experts 
and formalisation is carried out using conceptual graph language.

Knowledge models were deployed in other computer systems such as 
information (source) search systems. This development led to the creation of 
“organisational memories”. An organisational memory is the set of human and 
material resources – knowledge carriers – which allow an organisation to carry 
out its tasks. A memory can be composed of a set of text documents, videos, lists 
of employee skills and one or more knowledge models. The formalisation of these 
models allows them to be used automatically to help the circulation of resources 
and knowledge among the members of the organisation. This formalisation often 
takes the form of a thesaurus: a structured list of standardised terms organised 
into three types of relationship (equivalence, hierarchy, association), with the aim 
of indexing and helping to search for different content.  

The FAO (Food and Agriculture Organisation of the United Nations) has been 
instrumental in producing organisational memories in the agricultural field 
(O’Leary, 2008). Its bibliographic database AGRIS offers different types of 
resources (scientific documents, data sets, etc.) in several languages. These 
resources are indexed using the AGROVOC thesaurus, which is now one of 
the most important tools in the agricultural field (Sini et al., 2008). This 
thesaurus encompasses many aspects of the agricultural domain and can be 
adapted to the needs of a new organisation. An example of an organisational 
memory is the Agropedia project, led by a number of Indian agricultural 
institutes in collaboration with the FAO (Pappu et al., 2010) to transform 
scientific knowledge from universities into practical knowledge of use to 
farmers. Agropedia uses Topic Map knowledge models, which aggregate all 
the knowledge needed for a given crop.  

For example…
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Semantic access to information sources – The birth of the Semantic Web in 
the early 2000s had a strong impact on the field of knowledge representation. 
Semantic Web technology is a set of standardised languages, protocols and tools 
under the aegis of the W3C to enable the automated exploitation of Web resources 
according to their content. Web resources (such as HTML documents or, more 
broadly, any data available on the Web) are annotated with metadata describing 
their content in a formal language, constituting a fact base that can be enriched 
with a thesaurus or ontology that specifies its semantics.   

The main formal languages of the Semantic Web are:
	• �Resource Description Framework (RDF): the language for describing 
Web resources in the form of a graph made up of triples (subject, 
predicate, object); 

	• �RDF Schema (RDFS): an extension of RDF that allows a vocabulary to 
be defined in terms of classes and properties (or binary predicates) 
organised by specialisation;

	• �SPARQL Protocol and RDF Query Language (SPARQL): the RDF(S) 
description query language; 

	• �Ontology Web Language (OWL): the most commonly used language 
for describing Semantic Web ontologies;

	• �Semantic Web Rule Language (SWRL): a rule language that can be used 
to enrich OWL descriptions;

	• �Simple Knowledge Organization System (SKOS): RDFS specification 
for formalising terminologies, thesauri, classifications and other 
vocabularies used in information retrieval systems.

Web ontologies are modular and focus on a specific need to facilitate their 
reuse and combined use. By making them available on the web, the interoperability 
between knowledge-based systems can be improved. Of particular interest is the 
RDA Agrisemantics working group initiative which has been exploring the use of 
this technology and associated resources to improve the exchange and sharing of 
agricultural data (Aubin et al., 2017). This technology has allowed organisational 
memories to be transferred to the Web. 

Definition



63

INRAE is also developing organisational memories on the impact of climate 
change on agricultural practices and agroecology. An archive of French 
agricultural information bulletins, the Plant Health Bulletins (BSV), was 
compiled during the VESPAproject, which studied epidemiosurveillance 
networks (Roussey et al., 2017). 

The GECO collaborative web portal (https://geco.ecophytopic.fr/) was 
developed to improve knowledge sharing around integrated crop protection 
and agroecology. This portal manages a set of explanatory text sheets to 
propose means of controlling pests (Soulignac et al., 2017). GECO allows 
users to perform searches regardless of their level of expertise.  

Web ontologies and SKOS thesauri have become reusable resources. Specific 
portals have been developed for searching for all these resources..

At INRAE, the computer science department of the MISTEA UMR has, among 
other things, developed the AgroPortal (http://agroportal.lirmm.fr/) which 
lists ontologies and thesauri related to agronomy and agriculture and makes 
them openly available. AgroPortal also provides services to help annotate 
text documents and detect links between concepts in two ontologies 
(ontology alignment). It also contributes to advances in high-throughput 
plant phenotyping.  

Semantic integration of structured data – Linked Data refers to a network 
of linked sets of resources. It was developed in the 2010s and marked a new 
stage in data sharing using Semantic Web technology by considering a network 
of interconnected sets of resources. This network is based on the use of shared 
vocabularies (thesauri, ontologies, etc.), used to describe the data. This development 
goes hand in hand with the generalisation of the concept of data and encompasses 
all data, including structured data from different databases. 

For example…
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. 

Examples of structured data include: 
Weather data from an INRAE station is available as Linked Data (http://
meteo.clermont.cemagref.fr/). A central Semantic Sensor Network (SSN) 
ontology provides a design pattern for describing the measurements. 

The European project SmartOpenData (http://www.smartopendata.
eu/) proposed an infrastructure (and a SmartOpenData (SMOD) schema) 
for managing Open and Linked Data in the field of biodiversity and the 
environment (e.g. in agroforestry data management). 

The Agronomic Linked Data project (AgroLD – http://www.agrold.org) 
integrates 50 databases into a single RDF database. Its objective is to jointly 
question and link different points of view on cultivated plants (genomic, 
proteomic and phenomenic) formalised by at least one of the ten Web 
ontologies used (Gene Ontology, Plant Trait Ontology, etc.).

Hybrid architectures such as OpenSilex (http://www.opensilex.org/) that 
incorporate ontologies, an inference engine and different formats of databases 
(relational, NoSQL, RDF) are used to develop multiple information systems for 
high-throughput phenotyping. In this architecture, a scientific object (plant, 
pot, field, etc.) is identified by a web identifier (URI) and typed by an element of 
one of the associated ontologies. The RDF database stores the static descriptive 
metadata while the NoSQL database stores the raw data streams: drone photos, 
time series from field sensors, etc. 

For example…
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The GnpIS information system stores all the structured data from experiments 
carried out on plant phenotyping (Pommier et al., 2019). The ontologies 
proposed by the Crop Ontology network (https://www.cropontology.org/) 
are used as dictionaries for all observable traits in the experiments. 
For animals, the descriptions of animal experiments carried out in 
different research centres can be made compatible using a web ontology 
network developed at INRAE. The network currently consists of three web 
ontologies (Salaun et al., 2018): Animal Trait Ontology for Livestock (ATOL, 
on phenotypic traits in livestock), Environment Ontology for Livestock 
(EOL, on environmental parameters in livestock farming), and AHOL (for 
livestock animal health).

Emerging architectures – Beyond the Web of Data, the problem of the intelligent 
exploitation of increasingly large and heterogeneous data has led to very active 
research combining knowledge representation, data management, the Semantic 
Web, data mining and learning, etc. It is in this context that a new architecture 
has been proposed called Ontology-Based Data Access (OBDA) (Xiao et al., 2018), 
which combines a specific approach to data integration, called mediation, with 
the concept of the knowledge-based system. OBDA systems are structured in 
three levels: the conceptual level, organised around an ontology (described for 
example in RDFS or OWL); the data level, composed of various pre-existing and 
independent databases; and the mapping level, which translates the data relevant 
to the target application into a fact base using the ontology vocabulary. Queries 
to the system (e.g. in SPARQL) use this vocabulary, with the user expressing 
himself at a conceptual level with no knowledge of the data storage system (for 
example, a query such as ““what auxiliaries can control pest X and what are the 
associated techniques that would limit competition with the main crop?” would 
be completely dissociated from the underlying database schemas).

. 

At INRAE, the Ecology of Mediterranean Forests URFM unit of the ECODIV 
department conducts multidisciplinary research in ecology. In particular, it 
implements mature OBDA systems such as Ontop (https://ontop-vkg.org/) 
and MASTRO (https://www.obdasystems.com/mastro) for the sustainable 
management of Mediterranean forest ecosystems.

For example…
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In the context of the Internet of Things, some of these systems also use 
Semantic Web technologies (OWL ontology, SWRL rules, RDF annotation base). 

Standardisation bodies such as W3C and ETSI are currently working on the 
validation of new standards and ontologies to combine the Internet of Things and 
the Semantic Web: these are the SAREF ontology by ETSI and the Web of Things 
(WoT) ontology by W3C. These ontologies have not yet reached a sufficient level 
of maturity to be used in real-life applications..

At INRAE, the TSCF unit has proposed a translation of the IRRINOV manual 
irrigation method into SWRL rules and a web ontology network to represent 
knowledge for automating irrigation.  

Questions remain about the compatibility of ontologies built on different 
principles: different uses, different authors, different foundational ontologies 
etc. Some web ontologies propose data schemas corresponding to reusable 
patterns (design patterns) centred on a specific need. Other ontologies offer 
reference classifications to qualify data. Data managers must therefore build 
a network of ontologies to structure their data, checking that these ontologies 
remain compatible with each other. Are they based on the same patterns? Do 
they allow correct inferences to be made? Lastly, current research topics focus 
on questions concerning the distribution of reasoning over all the components 
of an “Internet of Things”-type system.  

 Knowledge restitution, visualisation and human-machine  
 interaction in agriculture 

Data-driven knowledge production methods (section 3.3) have produced results 
that are not only increasingly accurate and reliable but also increasingly difficult 
to understand, to the extent that most of these approaches are now described 
as “black boxes”, of which the user is unable to understand the determinants of 
the result produced (e.g. a decision on the technical process). One solution to this 
problem consists in using local interpretability approaches such as LIME (Ribeiro 
et al., 2016) or SHAP (Lundberg and Lee, 2017). Instead of aiming to explain 
the learned model as a whole, which is too complex, these approaches explain 
the reasons that led the model to produce such a decision in the specific case 
provided by the user, such as the attributes that contributed most (positively or 

For example…
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negatively) to the decision. For example, SHAP, used in oestrus detection as seen 
above (Fauvel et al., 2019), provides explanations of the type: “an oestrus was 
predicted today based on temperature changes over the last three days and a 
significant rest period three days ago.”

In parallel to the issue of interpretability, the visual representation of data and 
information is essential for any computer system designed with user interaction 
in mind. “Visualising” consists in producing visual elements (graphs, curves, 
maps, images) to help users understand, explore and analyse to make sense of 
data, models and information, sometimes present in large quantities and often 
complex (Kubicek et al., 2013). Smooth and efficient human-machine interfaces 
and visualisations are often essential to the success of digital systems intended 
for the general public. The field of agriculture is no exception to the rule.

There is a high demand for visualisation in this sector due to a combination of 
several factors: significant growth in the masses of data collected, the existence of 
users who are not computer scientists but are often technophiles, and the need 
for visibility on private and public data at different spatial and temporal scales. 
Visualisation is sometimes even seen as a strategic matter, because mastering 
these techniques can offer a competitive advantage or afford a certain power to 
some actors in the agrifood chain. Private players (equipment manufacturers) 
are heavily involved in the field, but there are also initiatives by universities and 
institutes, including INRAE and Inria, available under free (e.g. AQUAPONY,35 
GeoVisage,36 PARCHEMIN)37 or participatory licenses (I-EKbase)38 (Wachowiak 
et al., 2017). 

At INRAE, the Ecology and Evolution of Zoonoses group of the CBGP UMR 
analyses the viral diversity of hantaviruses and the evolutionary processes that 
shape it. Among other things, they piloted the development of AQUAPONY, a 
web-based viewer that allows interactive navigation through a phylogenetic 
tree and facilitates the objective interpretation of evolutionary scenarios. 

35. http://www.atgc-montpellier.fr/aquapony/
36. http://geovisage.nipissingu.ca/
37. http://www.parchemins.bzh/index.php/outil-de-visualisation-donnees-lagriculture-littorale-bretagne/
38. http://iekbase.com/hot-spots-monitoring
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The tools currently deployed for the agricultural world are based on traditional 
visualisation paradigms: cartography (GIS, or Geographical Information Systems), 
sensor data visualisation interfaces, collections of linked visualisations (multi-
faceted) and reactive tools (dynamic queries). Semantic interfaces and related 
visualisation strategies (linking views) are major topics of interest, as well as 3D 
visualisation, which provides a view of the topology of geographical areas (down 
to field profiles), and the use of image synthesis or even augmented reality.

At INRAE, the SAS UMR supports the agroecological transition of livestock 
systems and territories. In particular, it participated in the PARCHEMINS 
project on the visualisation of coastal agricultural data in Brittany, completed 
in March 2021. This project developed a map viewer, a web-based map 
consultation tool that allows the user to interact with geographical data. 
Designed for users who are not geomatics experts or computer scientists, 
it allows spatial information to be represented and analysed in an intuitive 
and easy-to-use way.

The interactivity and speed of response of visualisation tools are key in 
agriculture (and elsewhere!) as these visualisations must be adapted to lightweight 
devices (smartphones, tablets) or on-board terminals (connected tractors). The 
fluidity of data visualisation is closely linked with technical solutions, data exchange 
protocols and system architecture. Adaptive visualisation, which is currently a 
major research topic, makes it possible to adapt the visualisation to the context, 
such as the user’s profession, the visualisation terminals or the nature of the 
data available.

The issue of visualisation and knowledge sharing is not widely addressed in 
practice and thus remains more in the field of research than application for the 
time being. In agriculture, however, human expertise traditionally plays a very 
important role, creating a particularly favourable context for the development of 
interactive techniques: it is indeed tempting to combine human expert capacities 
with learning, optimisation or modelling algorithms (Boukhelifa et al., 2018). 
Depending on the strategy and the system, Human-Computer Interaction (HCI) 
can be either explicit (the user is regularly asked questions via an interface or 
visualisation system) or implicit (unbeknownst to the user or non-verbal, with 
the machine capturing information and using it as a learning base). Current 
research in visualization and HCI focuses primarily on questions concerning the 
interpretability, explicability, causality and transparency of interactions.

For example…
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The HCI/visualisation tandem is also a factor in frameworks in which human 
expertise is required to manage data uncertainty and decision-making on multi-
criteria issues: qualitative approaches are complementary to automatic/statistical 
approaches (e.g. choice of criteria) for managing ambiguities, knowledge gaps or 
extrapolations to different crop types. Examples include uses in agroecological 
zoning – based on clustering and segmentation techniques – or the Crop-GIS web 
application combining modelling and visualisation for maize crop management.39  
However, interactive systems can be difficult to evaluate because while the  
algorithm learns and adapts to the human, the reverse is also true: the user learns 
to use a system. Understanding these subtle mechanisms of co-adaptation and 
co-evolution requires the use of experimental science approaches (test plans, 
reliability of results, biases) and testing on cohorts of volunteers. 

In conclusion, the topics of visualization and HCI applied to agriculture are 
relatively rarely addressed in both agronomic and visualization scientific literature. 
And yet, the issue is a key factor in the adoption of technology because farmers 
prefer tools that are less accurate but easy to use to high-performance ones that 
are difficult to use (Pierpaoli et al., 2013).

 Decision Support Systems (DSS) 

In the 1980s, computer programs and electronics began to be used to improve 
efficiency in agriculture and reasoning in agricultural activities. This saw the 
emergence of the first digital DSS (Decision Support Systems). This revolutionary 
development has been fairly well received both by farmers (79% of farmers who 
use new technologies recognise their usefulness, source: Rapport agriculture et 
innovation 2025)40 and in society where there is a demand for digital innovations 
for the protection of the environment (47% of those questioned, OpinionWay 
survey, 2016). Digital DSS are based on “simple” computer programming combined 
with a relatively small body of reference data, and can be installed on personal 
computers or used in a web interface that allows access to the application. They are 
most often developed by research or technical institutes. This generation of DSS 
includes software such as INRAtion41 and InraPorc.42 These programs, designed by 
INRA, are French benchmark tool in terms of assistance for defining feed rations 
for ruminants and pigs. Many software programs have also been developed in the 
plant sector to help farmers plan and manage crop fertilisation, pest control or 
irrigation. Today, with the upsurge in digital technology, a new generation of DSS  
 
39. https://www.cropgis.com/
40. https://agriculture.gouv.fr/sites/minagri/files/rapport-agriculture-innovation2025.pdf
41. https://www.inration-ruminal.fr/
42. https://inraporc.inra.fr/inraporc/
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has emerged that uses contemporary digital technology such as remote sensing, 
GPS, the Internet of Things, artificial intelligence, etc. These DSS are designed 
and produced by the AgriTech sector, which involves major agribusinesses and 
numerous start-ups (Padhy and Satapathy, 2020).  

Agritech is a generic term for agricultural technology. It includes four main 
areas: 1/ biocontrol, 2/ agricultural big data , 3/ robotics and 4/ plant genetics 
and biotechnology. These four elements are often closely linked and many 
agricultural technologies are derived from them.

The integration of new technologies into DSS allows the range of services offered 
by these tools to be expanded as farmers seek to make the most appropriate farm 
management decisions (Spanaki et al, 2021). Precise knowledge of the state of 
agricultural plots or herds is essential for the farmer, who can now use data (images, 
biophysical measurements, etc.) from connected sensors to obtain more information 
than can be perceived by the naked eye. After various digital processes, the farmer 
can access this information via a dedicated application online or on a smartphone. 
In the livestock sector, these new digital tools are readily adopted by farmers if 
they promise technical and economic gains and can reduce the arduousness of 
work. First of all, there are DSS based on sensors worn by the animals (externally 
or internally), which provide real-time measurements of the physiological charac-
teristics of the animal and its activity (temperature, abdominal pressure sensors, 
movement, etc.). In dairy farming, the farmer can use these tools to monitor the  
animal’s reproductive cycle and reliably detect heat or parturition or health problems, 
even before any external signs can be detected by a professional. We are also seeing 
the emergence of DSS prototypes based on image recognition (from cameras 
installed on the farm) using artificial intelligence methods (deep learning). These 
allow animals’ behaviour and health to be monitored and can even go so far as facial 
recognition. If an anomaly is detected in a group or animal, an alert can be sent 
to the farmer’s smartphone. Despite the number of initiatives underway, certain 
issues, which are crucial for making a DSS used and usable by professionals, are 
still the subject of research carried out in collaboration with the latter. In particular, 
these concern precision, pertinence (a DSS that provides too many false alerts, for 
example, risks being rejected), the adequacy and form of the information made 
available to the farmer according to his expertise and needs, and the ergonomics 
of the tool, in connection with the notions seen in the visualisation and HCI section 
(Li et al., 2020). The way in which user knowledge is used is also the topic of ethical 
questions raised in connection with open innovation more generally.
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     Automation, control and robotics
As highlighted above, digital farming is far from being limited to data acqui-

sition and processing. The aim is to use this data in decision making and deter-
mine actions to be taken, both spatially and temporally, to optimise cultivation 
techniques capable of reconciling high levels of production, crop quality and 
environmental conservation. In this sense, precise and potentially frequent work 
will be required in order to meet such specifications, which is not always possible in 
terms of human resources and capacities. This is especially true since agricultural 
tasks are often tedious and sometimes dangerous. Exploiting the full potential 
of the principles of digital farming could therefore lead to task automation. 
Today, robotics technology is taking the developments already implemented 
in the context of automated tools or driver assistance systems for agricultural 
machinery even further. But, beyond the automation of certain tasks, advances 
in the field of robotics in the agricultural world must pave the way for a change 
in practices to accompany the ecological transition.

Farmstar is a DSS based on subcellular spatial images. It was developed by Airbus in collaboration 
with agricultural technical institutes. The complex processing chain combines the use of spatial 
images and other data sources such as climatic data, and uses computer simulation for agronomic 
models. The result can be accessed via APIs (Application Programming Interfaces) which are 
queried by the user application. The farmer can thus obtain useful information in the form of maps 
and “dashboard” indicators via an integrated web application that hides the complex computer 
architecture and data flows involved..

Figure 1: Farmstar, from high-resolution spatial imagery to advice maps.

3.5
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The VALSE project-team (Inria, Ecole Centrale de Lille, Université de Lille) 
studies problems arising from the analysis of distributed, uncertain and 
interconnected dynamic systems. Its aim is to design estimation and control 
algorithms for different fields. In particular, in the field of oyster farming, 
these algorithms have enabled the design of a biosensor based on the 
measurement and interpretation of bivalve mollusc behaviour, for the remote 
detection of coastal water pollution and the consequences of climate change.  

 Structured environments: allies of robots 

The rise of robotics has historically been rooted in industrial applications, 
especially automotive, for the automation of production lines (Bahrin et al., 2016). 
From this, it is possible to design infrastructures that allow robots to be referenced 
and operate in perfectly known and unchanged environments, as well as to control 
the conditions of interaction (lighting conditions, handling known objects, creation 
of specific zones). This greatly helps the design of robust perception and control 
algorithms based on robot operation models that require strong assumptions 
(rolling without slipping, object or scene recognition, accurate localisation, etc.). 
As a result, robotics applications in agriculture have primarily focused on the 
indoor environment, particularly for livestock production (Bergerman et al., 
2016). In this sense, the biggest market for robotics in agriculture is currently in 
the livestock sector, with feeding and milking robots. These are able to operate 
using a number of reference points and benefit from special arrangements to 
maintain high repeatability. They can thus perform demanding tasks (such as 
milking or feeding animals) and free up the farmer’s time. Such developments 
are increasingly common in agricultural practices, and today half of new French 
dairy farm facilities are equipped with milking robots (Tse et al., 2018).

In cropping, such infrastructures are more difficult to put in place, with the 
structure of crop production being inherently changeable and posing detection 
and referencing issues. Nevertheless, the automation of certain tasks, particularly 
driving farm machinery, has greatly benefited from the advent of GPS, especially 
centimetre-precision models which offer absolute referencing. Many devices 
aimed at automating machine operation under the supervision of a “driver” have 
thus emerged, sharing a certain number of research challenges with advances 
in driverless vehicles.

For example…
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However, the use of GPS sensors alone remains limited for the production of 
fully autonomous robots (i.e. without on-board human supervision) for several 
reasons. Firstly, the potential loss of satellite signals near buildings, in greenhouses 
or near tall vegetation, would require manual intervention Secondly, farming  
requires referencing and interaction with plants and not absolute references, even 
if planting is carried out using GPS referencing. Lastly, the absence of an on-board 
supervisor means that autonomous machines must be equipped with a means of 
perception to ensure their safety (avoiding obstacles, traversability management).

Study of a robotized electric tractor for agroecology. © INRAE.

Thus, several other strategies including vision (Stefas et al., 2019) and laser 
technology (Tourrette et al., 2017) are substituting or complementing absolute 
referencing to achieve autonomous navigation. This is already being used 
commercially in robots, mainly for mechanical weeding, mowing and surveillance. 
However, the task efficiency of these robots is currently limited and performance 
is closely correlated to detectability conditions.

Before envisaging more complex work (pruning, harvesting in the field) 
performed in a fully autonomous way, there are several scientific and techno-
logical obstacles that must be overcome in order to deal with the variability of 
the environments and the diversity and complexity of the tasks to be carried out 
while preventing any damage to the robot(s).
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 From adaptation to reconfiguration 

Unlike mobile robotics in industrial environments or road traffic, mobile 
robots in natural environments require specific adaptive abilities to deal with the 
diversity of interaction conditions and their variability (Bergerman et al, 2016). 
This involves the online modification of perception and control parameters (such 
as modifying response times as a function of speed (Hill et al., 2020) or adapting 
detection thresholds to light conditions. Several adaptation and anticipation or 
robust control mechanisms have been proposed to deal with the variation in 
these environments and maintain a high level of accuracy, while protecting the 
robot from damage (Krid et al., 2017, Yandun et al., 2017). This last functionality 
is defined in a relatively binary way in structured environments: avoid collisions 
with geometric obstacles, do not operate in out-of-bounds areas, etc. In natural 
environments, the notion of “obstacle” is less well defined and solutions are more 
complex. Firstly, encountering an obstacle is not necessarily a failure, as robots 
do not have to be stopped when passing over vegetation or if they have to push 
aside a branch. Secondly, some areas can be traversed under certain conditions 
(speed or load limitation) and the crossing also depends on the ground conditions 
(especially adhesion) and the properties of the robot (Guastella, 2018). Lastly, 
operating in some areas may lead to a loss of control or physical stability of the 
robot (Wolf et al., 2019).

At INRAE, the TSCF UR designs reconfigurable and shared autonomy systems 
to enhance the performance and safety of machines operating in natural 
environments, particularly those found in agriculture. For example, the team 
designs adaptation mechanisms to deal with the diversity of interaction 
conditions and their variability.  

Several approaches allow this complexity to be taken into account through 
the concept of traversability (the set of conditions allowing a given area in front 
of the robot to be crossed). Nevertheless, work on this concept illustrates the 
difficulty of defining a single perception and control approach to allow a robot 
to perform complex agricultural tasks. Many studies currently focus on the 
real-time selection or fusion of typical behaviour (see the INRAE Adap2E project43), 
which addresses the problem of scene interpretation and behaviour evaluation.  
 

43. https://adap2e.inrae.fr/

For example…
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In addition, many strategies in agricultural robotics are based on cooperation 
between less complex robots able to work together or in the same area. This 
reduces the risks in terms of the operation of each robot (limited kinetic energy 
in the case of impact) and their cost, but shifts the issue of complexity to the 
association and synchronisation of the group (Blender et al., 2016).   

Conclusion
In this chapter, we have browsed at the different areas of research addressing 

the use of digital technology in agriculture. They mainly concentrate on data at 
all levels of the data cycle, from capture to exploitation via collection, traceability, 
processing, storage, interpretation, restitution and use in automated or robotic 
systems. Different skills involving networking, modelling, learning, knowledge 
management, control and security are used to provide efficient, safe and secure 
solutions. The key aims are to assist farmers in difficult tasks, allow better 
management of our resources and promote exchanges and expert knowledge, 
all while respecting the environment as much as possible.  
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Digital technology is going to have a significant impact on agriculture. But will 
this impact be positive or negative? Some, such as Rotz et al., (2019), fear that 
digital technology will lead to an increase in market integration and corporate 
concentration; while others, such as Bonny (2017) contest this conflict, provided 
changes are made to governance and provided there is effective communication 
with the wider public. At the same time, a number of authors have mooted the 
possible convergence between agroecology and digital technology (Bellon Maurel 
and Huyghe, 2016; Biradar et al., 2019; Caquet et al., 2020; Grieve et al., 2019; Klerkx 
and Rose, 2020; Wegener et al., 2017). The term ‘agroecology’ is used to refer to both 
the scientific discipline and an agricultural movement or model based on a set of 
alternative practices, the aim of which is to build viable food systems which respect 
both mankind and the environment. As pointed out by Altieri (1989), it incorporates 
both technical and socio-economic aspects all the way along the production chain 
(what is produced, how it is produced and for whom). Agroecological production is 
designed to improve agricultural systems through the use of environmentally-friendly 
processes, with a particular focus on biological synergy between the component 
parts of the agroecosystem and balancing out the “inputs and outputs” of the 
system, a lever also known as “closing the cycle”.

This chapter will focus on the opportunities and challenges presented by digital 
technology for agroecology in its broadest sense, i.e. sustainable food systems. As 
an “enabling technology”, digital is capable of increasing the capacities of farmers 
to respond to four major challenges:

	• �improving production, in line with the principles of agroecology, by creating 
knowledge to support the agroecological transition and by adapting to 
exogenous factors, namely climate change;
	• improving production by assisting farmers with the running of their farms;
	• �better establishing farmers within the agricultural ecosystem, i.e. regional 
ecosystems and value chains; 
	• �improving sharing, learning and understanding by supporting the agroecological 
transition: sharing data, information and knowledge.

The specific challenges facing the Global South will also be explored.

4_Digital technology and agroecology: opportunities to explore, challenges to overcome
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     �Improving production: creating 
knowledge to support the transition 
towards agroecology

The scientific and technological knowledge that will support the transition 
towards new systems of production (including organic farming, integrated pest 
management and agroforestry) are still being developed. But in order to ensure 
the widespread deployment of agroecological models and to enable them to be 
scaled up, there is an urgent need to understand the mechanisms involved (Altieri 
et al., 2012) and to establish points of reference (Vanloqueren and Baret, 2009). 
In agroecology, all levels of diversity and biological regulation – within species, 
between species or functional (plant-animal interaction, landscape ecology, etc.) – 
can be deployed in order to make systems resilient (Caquet et al., 2020). The flipside 
is the abundance of possibilities – of varieties to choose, species assemblages, 
interaction between crops and livestock – which makes it impossible to create  
knowledge out following conventional paths. Faced with this challenge, new modes 
of building knowledge must be developed, and digital technology can contribute 
to this vital step for the agroecological transition (Leveau et al., 2019) using three 
interconnected levers: (i) the modelling of agroecological complex systems, which 
requires a holistic approach; (ii) data collection on these new cropping growing 
and breeding methods, chiefly through the participatory collection of information; 
(iii) the inference of models on these new production systems, based on data.   

Connected insect trap. © Le mas numérique. 
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 Representing complex systems within agroecology 

Modelling in agroecology is very much on the rise but it remains a complex 
subject.44 Agroecological modelling can only have any meaning if it incorporates 
interactions within the farm, or even at a landscape level (Tixier et al., 2013). It is 
a delicate task. Antle et al. (2017) have identified a number of points which must 
be addressed in order to build next-generation models for use in agroecology: (i) 
improving existing modelling in order to factor in uncertainty or extreme events; (ii) 
transitioning from cropping systems to production systems; (iii) modelling complex 
rotations and crops; (iv) modelling links between crops and animal production; (v) 
upscaling , from fields to the wider landscape; (vi) interoperability. “Unit models” used 
to describe each compartment of the system must also be developed. Furthermore, 
looking towards the wider landscape leads to the emergence of new scientific fron-
tiers relating to a “greater understanding of population dynamics and the role of 
interfaces between cropping environments and natural environments, about which 
little has been written” (Caquet et al., 2020). More, there are a number of challenges 
linked to modelling within farms, owing to the fact that farms are complex systems, 
which should be managed using a combination of socioecological and sociotechnical 
models (Bergez and Thérond, 2019). 

 Large scale data collection for new agroecosystems 

A lack of data and difficulties accessing it can prove a hindrance to improving 
and using models. However, there has been a phenomenal increase in the 
quantity of data on agriculture: in 2014 around 190,000 pieces of data were 
estimated to be produced each day on a farm in the USA, and by 2050 more 
than 4 million pieces of data could be produced each day (Rotz et al., 2019). 
This data comes from connected objects (Elijah et al., 2018), fixed sensors 
(weather stations, connected traps, various different types of alarm, etc.), 
sensors embedded into machines (used to monitor the machine or crops), 
sensors worn by animals (activity sensors, boluses for measuring temperature, 
trackers) or sensors carried by human operators (mobile phones). Given the 
variety and the volume of agricultural data, it may now become more and 
more appropriate to use the term “agricultural big data” (Bellon-Maurel et al., 
2018). Indeed, data is essential for the purposes of creating models of complex  
mechanisms within agroecology, which are difficult to model using a deterministic 
approach. In order to develop such models, systematic quantifications and 
observations must be carried out within agricultural production systems at 
different levels (Biradar et al., 2019). Chowdhary et al. (2019) have discussed  
the issue of the lack of reference points, the phenotyping bottleneck which is  

44. Caquet et al., (2020) identified no fewer than 107 models at Inra in 2018.
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holding back agroecology and agroforestry. For this reason, the development of 
knowledge in these areas will require an increase in high-throughput phenotyping 
capacities in diverse environments, through the deployment of high-throughput 
phenotyping on farms (in fields or in herds). This raises questions regarding  
devices for phenotyping. Phenotyping is currently performed by researchers and 
farmers using expensive measurement devices such as buggies or other automated 
platforms in fields45. A number of authors (Caquet et al., 2020; Grieve et al., 2019; 
Ingrand, 2018) have recommended developing phenotyping on a large-scale or 
the continuous monitoring of crops, animals and environmental conditions. This 
would require affordable and easy-to-use measurement devices, which either 
proximate – e.g. the portable sensors developed by the CAPTE unit – or remote 
sensors – e.g. Sentinel 2 satellites, which deliver resolution of ten metres with 
a three to five day revisit time (Biradar et al., 2019) – to assess the physical and 
physiological characteristics of plants and animals (Reynolds et al., 2019). 

 Data-based modelling: a step towards new knowledge 

The possibilities which artificial intelligence opens up for extracting knowledge 
from data in agriculture – particularly “big data” or “smart data” – have been well 
documented (Pham et Stack, 2018; Wolfert et al., 2017), but do not specifically 
concern agroecology. Those authors who have studied the use of neural networks 
in agroecology (Jiménez et al., 2008; Schultz et al., 2000) have noted several key 
aspects: (i) the issue of validating the models obtained and uncertainty; (ii) the 
need to organise systems into simpler sub-systems which neural networks will 
be applied to and (iii) the importance of considering inference, often compared 
to a black box, as a stepping stone towards a more analytical model.

     �Improving production: using  
digital technology to assist farmers  
with the running of their farms

According to Caquet et al. (2020), “the capacity of digital technology and agri-
cultural equipment to specifically support agroecology remains a challenge”. One 
of the five “main sectors” to come to terms with concerns “the characterisation 
of environments, plants or livestock with a view towards improving management  
and analysis”.46 The question of decision support is also posed, and all the more 

45. See for example the Field Scanalyzer from Lemnatec, the Phenomobile or the buggy marketed by Hiphen, 
the Fieldscan from Phenospex, etc.
46. Others are: “the sharing of information between regional stakeholders”, “agricultural equipment  
for the specific needs of agroecology”, “characterising the response of organisms for phenotyping purposes” 
and “traceability for operating methods”.
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pressing given the multiple objectives in play on farms. “Scaling up” to a highly 
transformative form of agroecology (redesigning systems) will require new tools, 
and digital technologies could play a key role when it comes to (i) improving 
management along the season (which calls for precision agriculture or precision 
livestock farming) or at a strategic level (incorporating economic data); and (ii) 
improving agricultural operations, with agricultural equipment designed for more 
complex agricultural systems requiring more work.

 Adapting the principles of precision agriculture to agroecology:  
 observing and taking decisions 

The principles of precision livestock farming and precision agriculture can 
be applied to agroecology since they lead to interventions tailored to suit 
plants and animals needs. They centre around a four-stage: observation (mea-
suring “symptoms”), diagnosis (identifying the status of a plant or an animal), 
recommendation (determining the action to take), and action. With precision 
agriculture it is possible to map diversity within crops and to apply different  
measures to different parts of a plot (Bellon and Huyghe, 2016): nitrogen  
fertilisation (using satellite sensors from the early 2000s onwards and now tractor-  

 

Takeoff of a mapping drone in Senegal. © CIRAD.
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embedded technology; precision irrigation (Molden, 2007), drawing on estimates 
of water scarcity using “proxies” (the temperature of the surface of leaves, visual 
estimation of physiological characteristics);47 and crop protection, which 
is the most complex aspect given the wide ranging nature of phytosanitary 
problems (weeds, insects and other pests, and diseases). Precision livestock 
farming involves tracking environments conditions (measuring the atmosphere 
within buildings or external conditions) and animals. Over the past twenty 
years or so, sensors on animals or in their environments have been used, 
particularly on dairy farms: identification and tracking using RFID and GPS, 
imaging (2D, 3D, infrared), accelerometers, sounds, automated measurement  
devices (scales, water meters, milk meters, feed distributors, etc.) (Chastant-
Maillard and Saint-Dizier, 2016). Various different parameters are monitored: 
growth, milk production, food ingestion, physiological status, behaviour, reproduction, 
health and well-being (detecting lameness, digestive issues, etc.)… (Benjamin and 
Yik, 2019; Fournel et al., 2017; Halachmi et al., 2019; Knight, 2020; Neethirajan, 
2017; Rowe et al., 2019; Veissier et al., 2019; Xin and Liu, 2017). Currently, these 
techniques are primarily targeted at conventional livestock farming, but solutions 
are being developed for alternative systems. These include devices for monitoring 
animals and pasture (Shalloo et al., 2018) in order to improve the efficiency of 
extensive grazing systems - which would otherwise be limited by a lack of data – 
and to guarantee consumers responsible livestock breeding (Neethirajan, 2017).

There are two crucial questions when it comes to the management of agro
ecological systems: 

(1) Regarding observation, this relates to the early detection of malfunctions. For 
both cropping (Divya and Santhi, 2019; Johannes et al., 2017) and livestock farming 
(Ingrand, 2018), this is crucial for alternative farms (agroecology, organic farming, 
integrated pest management) seeking to scale up without access to the same range 
of curative measures as conventional farms. Out in the fields, visual observation 
takes up a lot of time, is dependent on the experience and the availability of the 
observer (Mul et al., 2016) and sometimes impossible to implement if the problem 
is undetectable. Technologies are marketed or still in the research phase: (i) optical 
devices for plants monitoring and detection of winged insects (Brydegaard et al., 
2014; Grieve et al., 2019), (ii) quantification of spores using real-time analysis of 
bioaerosols, not yet satisfactory (Sharma Ghimiri, 2019), (iii) connected insect traps 
(López et al., 2012), (iv) animal monitoring devices (Li et al., 2020; Moura et al., 2008; 
Tullo et al., 2018; van Hirtum and Berckmans, 2004) and, more recently, so-called 
“portable” devices, which are worn by animals (Neethirajan, 2017).  

47. Apex Vigne- https://www.hdigitag.fr/fr/application-mobile-apex-vigne-facilite-le-suivi-de-la-croissance-de-
la-vigne/
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(2) Regarding decision-support, this relates to building models to supply 
information which can be used in decision-making. Lepenioti et al. (2020) identified 
three types of data processing: (i) descriptive analysis, answering questions such 
as “What is the value of the parameter in question? How do levels compare to 
other producers or other years? What has happened?” (ii) Predictive analysis, 
answering questions such as “What is going to happen?” and “Why?” and (iii) 
prescriptive analysis, answering questions such as “What is the recommended 
course of action?”. The level of complexity for these models is growing, as are 
problems linked to interpretability and uncertainty. There are methodological 
bottlenecks linked to how models are built: which symptoms are to be selected 
to incorporate, into the models?, how are symptoms expressed due to natural 
variability? and, when it comes to recommendations, what are the other factors 
inherent to plants or animals, the environment, production or breeding systems 
(factoring in other individuals from their group), the equipment used and the 
agricultural strategy employed?  

 Multi-objective decision-making in agroecology 

Strategic decision-making with regard to how farms are run is quite different 
in agroecology because farmers objectives tend to be multivariate (optimising the 
three dimensions of sustainability)48 and multitemporal (short and long term). 
This raises certain questions with regard to modelling such as: (i) determining the 
optimum in a multi-level, spatio-temporal system; (ii) incorporating the farmer’s 
strategy into optimisation models (Antle et al., 2017; Groot et al., 2010); (iii) 
dealing with uncertainty. The use of alternative modelling methodologies and risk 
management protocols is also to be explored: the aim here is not to seek out an 
optimum compromise but to keep the system within possible desired outcomes. 

 Co-designing innovative agricultural equipment and agroecosystems 

Technology has the capacity to play a key role when it comes to scaling up 
within agroecology, where the level of technical complexity is greater than in 
monoculture farming (Wegener et al., 2017). Mixed culture farming (multiple 
species, multiple varieties) or intercropping could be implemented on a large scale 
through high-precision operations (from sowing to harvest) and the characteri-
sation or the sorting of mixed products from harvests. In agroforestry, trunks are 
an impediment to the mobility of traditional machinery, preventing them from  
being adopted (Mattia et al., 2018), but there are few technological solutions; 
Chowdahry et al. (2019) have suggested developing small, inexpensive “soft  
 

48. The economic, environmental and social.

4_Digital technology and agroecology: opportunities to explore, challenges to overcome



84

robots” with flexible arms, operating in networks. For livestock farming, milking 
robots capable of being transported into pastures could help to bring about a 
more generalized return to grazing (Cloet et al., 2017). Lastly, in relation to the 
well-being of farmers or employees, the objective is to reduce tasks which are 
hazardous, tiring or time-consuming (Vasconez et al., 2019). This concerns vegetable 
growing and arboriculture in particular: weeding robots sold for use in market 
gardens; inexpensive, open-source weeding robots for microfarms (Farmbot, 
LettuceThink); harvesting robots – currently a sticking point for market gardens 
and in arboriculture because of the expense – and most notably collaborative 
robots or cobots (Vasconez et al., 2019).  

Robots would be capable of overcoming constraints in new crop and livestock 
farming systems, with productivity equal to that of current practices. Collaborative 
work, either between small robots operating in swarms or between robots and 
humans (cobots) is a possible avenue to explore. Bottlenecks are the cost of robots 
(linked to their multifunctionality), how collaborative work is organised (between 
robots or with humans), perception and gripping, and safety (mobility, interaction 
with humans). In order to deploy this technology, challenges linked to its envi-
ronmental impact (manufacturing, use, end of life) and resiliency (repairability, 
adaptability and autonomy) will also need to be overcome. Participatory design 
could provide a means of successfully developing robots for use in agroecology, 
reducing tensions between approaches based on ecology and those based on the 
benefits of technology (di Salvo et al., 2014). In Denmark the ITU (IT University 
of Copenhagen) has sought to alleviate these tensions by considering robots as 
a part of the ecosystem (“robotics agroecology”).49  

Lastly, there is the issue of the divide between major farms are likely to adopt 
robots and smaller, unconventional farms which either do not adopt them or 
are late to adopt it (Caquet et al., 2020). It could be avoided by combining a 
frugal approach with a high-tech approach, similar to the ones of the ‘high-low 
tech’ research group (MIT; 50 Kadish and Dulic, 2015) and “makers” approaches 
(Anderson, 2012).   

49. https://real.itu.dk/projects/robotic-agroecology/  
50. http://highlowtech.org/
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     �Improving integration within  
the agricultural regional or economic 
ecosystem

Aside from the potential benefits for agricultural production, digital technology 
could reshape the way in which farmers – in the context of the agroecological 
transition – interact with the agricultural ecosystem, both in terms of the economic 
sector (upstream with agricultural services or downstream through value chains) 
and land management..

 Agricultural services reshaped by digital technology 

Advice – Advice is very much central to innovation systems in agriculture 
(Labarthe, 2009). It encourages interaction between stakeholders within these 
systems: agricultural organizations (including cooperatives), research institutions, 
NGOs, public bodies, industries both upstream and downstream, intermediaries, etc.

The question of the impact of digitalisation on farming advice services has 
been the subject of recent research (Fielke et al., 2020), and there are projects 
aimed at supplying farming advisors with the digital tools they need, drawing on 
participatory design.51 Digitalisation has had a significant impact on the activity of 
advisors, both at front office level (new interfaces and applications linking advisors 
to farmers) and back office level (developing new services via the widespread use 
of data or agronomic models). But alongside digitalisation, we have also seen 
the emergence of new players (start-ups, firms from the IT sector) capable of 
completely overhauling technical advice services and the dynamics of agricultural 
innovation systems (Fielke et al., 2019).

At the same time, a number of public policies have been introduced at EU, 
national and regional level in relation to farming advice, the aim being to contribute 
towards the sustainable development of agriculture (Dhiab et al., 2020). Here 
there are two issues at stake. On one hand, digitalisation is set to transform the 
very nature of farming advice; on the other, advice must support the digitalisation 
of agriculture in the interests of sustainable development, overcoming social, 
economic or environmental contradictions linked to digital technology: possibi-
lities of inequality of access to information, of unsuitability of digital solutions, 
of loss of autonomy, of risk of power imbalances or locking (see Section 5: risks).  

51. See, for example, the EU projects https://www.h2020fairshare.eu/ or https://www.agrilink2020.eu/

4.3
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Insurance – Financial protection is essential when it comes to improving 
living standards within agriculture, owing to its sensitivity to adverse weather. 
There are various different systems, either in the form of funds (e.g. ‘agricultural 
disaster funds’) or in the form of insurance, irrespective of whether or not this 
is private. These different systems provide compensation for damages, which 
digital technology can help to identify. Insurance is either “traditional” – based on 
claims for losses (harvests, yield, etc.) – or, more recently, “index-based”, whereby 
clients are compensated based on indexes linked to these losses (De Leeuw et al., 
2014): regional performance indexes, climate indexes, indexes based on satellite 
imaging (Vroege et al., 2019), composite indexes (De Leeuw et al., 2014). Digital 
technology could help to improve index-based insurance through observation 
systems and modelling. When it comes to building indexes, information – tradi-
tionally taken from public authorities (weather forecasts, spatialised estimated 
yield) (De Leeuw et al., 2014; Rao, 2010) and remote sensing (De Leeuw et al., 
2014; Vroege et al., 2019) – must verify four principles, which is not trivial: it 
must be (i) worthy of trust and verifiable, (ii) closely correlated with the damage, 
(iii) continuously accessible and (iv) collected over a sufficiently long period of 
time (Vrieling et al., 2014). In traditional insurance models are used to estimate 
contingencies, whereas in index-based insurance the data is linked to the damage 
using the index. The imperfect correlation between the index and the damage is 
the “baseline risk”, which is sought to be reduced by creating composite indexes, 
e.g. by combining satellite data, climate data and even land use data (De Leeuw 
et al., 2014; Rao, 2010; Vroege et al., 2019). The dangers lie in (i) creating complex 
indexes which farmers are unable to interpret (Vroege et al., 2019), (ii) incorrectly 
incorporating weather patterns caused by climate change, further complicating 
the relationship between meteorological data and output, and (iii) the incorrect 
use of big data – multisource, multiresolution, non-stationary – in the parametric 
statistical analysis of traditional actuarial models (Ghahari et al., 2019).    

 Reshaping value chains with greater market connectivity 

Digital technology opens up possibilities for remodelling both the food 
system and value chains. In global chains it can reduce commercial costs, ensure 
compliance with standards and facilitate international trade, while in shorter 
chains it can increase the visibility of and ensure transparency. In this way it 
gives power back to those at either ends of the value chain: small farmers and 
consumers (Jouanjean, 2019).

Platformisation – Platforms are central to new economic channels for sales of 
agricultural products, food or services (e.g. in agriculture cofarming.info, hellotractor.
com) (ANRT, 2018). These open interfaces intermediate between suppliers and 

https://hellotractor.com/
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clients, delivering technical and economic synergy (Tirole, 2016). The fact that 
they are free and easy to use helps to get as many users as possible to engage 
with them, which is the main value proposition for encouraging suppliers to 
use a given platform (Leibovici, 2015). E-commerce in the agribusiness sector 
concerns giants such as Walmart and Amazon, but it can also be found at a local 
level, with a new model for rural and agricultural development borrowing from 
both modern approaches (based on globalisation) and postmodern approaches 
(centred around regional integration) (Rieutort, 2009). Many regional authorities 
are seeking to build platforms aimed at matching supply to demand and thus  
enabling isolated rural areas to access high-value market segments and to create 
stable relations with consumers in urban areas –, supplying school cafeterias 
and satisfying citizens expectations,, in both the Global North and Global South 
(IPES-Food, 2016). Through digital technology and platforms, the global market 
for “collaborative” consumption is expected to grow from 15 to 335 billion dollars 
between 2017 and 2030 (Claquin et al., 2017).  This level of development will require 
tailored logistics, which could also draw upon digital technology (Messmer, 2013).

There are two bottlenecks for these new channels: visibility of the offer and 
logistics. The offer is currently scattered across multiple platforms, limiting the 
network effect (Metcalfe’s law) and, therefore, the appeal of platforms, which 
find it difficult to identify an economic model. Furthermore, a lack of digital and 
logistical flexibility are significant obstacles to farmers joining these platforms. 
Collective catering requires food to be sourced locally (EGAlim law): how can this 
be ensured and kept secure with a fragmented offer? Research – particularly 
operational research – could be called upon for the purposes of planning this 
fragmented supply, for the management of distributed databases (across various 
platforms) and to devise logistics systems compatible with these fragile but low 
added value products.

Traceability and trust – The traceability of both human and animal food is 
mandatory between companies (the EU’s General Food Law from 2002) and 
optional within companies. Intra-company monitoring has become widespread 
in factories through automation and information systems (Fountas et al., 2015), 
but take-up has been less common in agriculture (Galliano and Orozco, 2011): 
in France, technical and economic monitoring software is used by an average of 
7% of farmers within collective organisations, with a significant amount of varia-
bility (between 2 and 35%)52 This is a growing market (in the USA it is expected 
to double between 2016 and 2023, growing by more than 14% year on year)53  
 
52. http://agrotic.org/observatoire/2017/11/06/usage-du-numerique-pour-la-gestion-technico-economique-
des-exploitations-agricoles/
53. https://www.marketsandmarkets.com/Market-Reports/farm-management-software-market-217016636.html
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given the desire to automate data capture in order to prevent input errors and to 
reduce people’s workloads: optical codes (barcodes, QR codes), electronic codes 
such as RFID (Luvisi, 2016), voice recognition (Bellon-Maurel et al., 2014), etc. 
The recording of practices will result in the massification of private data, which 
could be valued by providing consumers with better information on production 
conditions, meeting their expectations (Jouanjean, 2019). The emergence of 
“hyper-transparency” (Kos and Kloppenburg, 2019) has transformed the way in 
which the value chain is governed, with new roles for consumers – who influence 
distributors and processors – and for small farmers, who are better paid by buyers 
willing to pay a higher price for desired “properties”, including a fair price for  
farmers (Jouanjean, 2019). This has a double effect in that it helps consumers to 
make an informed choice while also helping producers to show that they have 
adopted improved practices and standards through labelling (Gardner et al., 
2019; Kos and Kloppenburg, 2019) justifying the willingness to pay (Caquet et al., 
2020). Similarly, this is a key aspect of (largely voluntary) sustainability certifica-
tion initiatives (Mol et Oosterveer, 2015), which could contribute to participatory 
guarantee systems – eliminating the need to pay third parties for checks – or 
assist with carrying out “automatic” LCAs (Life-Cycle Assessments) (Bellon-Maurel 
et al., 2014, 2015; Miah et al., 2018).

In this push for transparency, technology which helps to build trust – a key 
issue – can be drawn upon (Jouanjean, 2019). Blockchain technology is a good 
example of this. The blockchain is a transparent and secure means of storing 
and sharing information which operates without any central control body54: it is 
a distributed system with no central authority. It creates a database recording all 
previous exchanges that is shared by different users, allowing the validity of the 
data to be verified. However, in supply chains, implementing blockchains is far 
from straightforward. The problem is that while the blockchain guarantees the 
validity of the information shared (its origin, its integrity and its temporality), it 
cannot guarantee its truthfulness, i.e. consistency between data flows and product 
flows. This issue is currently dealt with using data consolidation (building confi-
dence indexes in relation to the data) or technology (RFID,55 combining RFID/3D 
videogrammetry/digital fingerprints (Gopalakrishnan and Behdad, 2019). Lastly, 
given that food products are perishable, it is worth tracking them across the 
logistics chain, particularly if they are long, by recording data during transport: 
quick identification of who is responsible in the event of a defect, anticipated 
reassignment of products in the event of a breakdown, preventing food waste, 
detecting the falsification of products during transit (Jouanjean, 2019).  

54. https://blockchainfrance.net/
55. https://www.wwf.org.nz/what_we_do/marine/blockchain_tuna_project/
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given the desire to automate data capture in order to prevent input errors and to 
reduce people’s workloads: optical codes (barcodes, QR codes), electronic codes 
such as RFID (Luvisi, 2016), voice recognition (Bellon-Maurel et al., 2014), etc. 
The recording of practices will result in the massification of private data, which 
could be valued by providing consumers with better information on production 
conditions, meeting their expectations (Jouanjean, 2019). The emergence of 
“hyper-transparency” (Kos and Kloppenburg, 2019) has transformed the way in 
which the value chain is governed, with new roles for consumers – who influence 
distributors and processors – and for small farmers, who are better paid by buyers 
willing to pay a higher price for desired “properties”, including a fair price for  
farmers (Jouanjean, 2019). This has a double effect in that it helps consumers to 
make an informed choice while also helping producers to show that they have 
adopted improved practices and standards through labelling (Gardner et al., 
2019; Kos and Kloppenburg, 2019) justifying the willingness to pay (Caquet et al., 
2020). Similarly, this is a key aspect of (largely voluntary) sustainability certifica-
tion initiatives (Mol et Oosterveer, 2015), which could contribute to participatory 
guarantee systems – eliminating the need to pay third parties for checks – or 
assist with carrying out “automatic” LCAs (Life-Cycle Assessments) (Bellon-Maurel 
et al., 2014, 2015; Miah et al., 2018).

In this push for transparency, technology which helps to build trust – a key 
issue – can be drawn upon (Jouanjean, 2019). Blockchain technology is a good 
example of this. The blockchain is a transparent and secure means of storing 
and sharing information which operates without any central control body54: it is 
a distributed system with no central authority. It creates a database recording all 
previous exchanges that is shared by different users, allowing the validity of the 
data to be verified. However, in supply chains, implementing blockchains is far 
from straightforward. The problem is that while the blockchain guarantees the 
validity of the information shared (its origin, its integrity and its temporality), it 
cannot guarantee its truthfulness, i.e. consistency between data flows and product 
flows. This issue is currently dealt with using data consolidation (building confi-
dence indexes in relation to the data) or technology (RFID,55 combining RFID/3D 
videogrammetry/digital fingerprints (Gopalakrishnan and Behdad, 2019). Lastly, 
given that food products are perishable, it is worth tracking them across the 
logistics chain, particularly if they are long, by recording data during transport: 
quick identification of who is responsible in the event of a defect, anticipated 
reassignment of products in the event of a breakdown, preventing food waste, 
detecting the falsification of products during transit (Jouanjean, 2019).  

54. https://blockchainfrance.net/
55. https://www.wwf.org.nz/what_we_do/marine/blockchain_tuna_project/
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Was hypertransparency in 2017 driven by the launch of the brand “C’est qui le 
patron?” (CQLP - which translates as “Who’s the boss?”)? Using the internet, 
CQLP worked with consumers to design a range of ethical products (in terms 
of the price paid to producers), questioning them on products’ technical and 
social specifications and willingness to pay accordingly. Another example is 
Yuka, an application which provides “information on health impact” based 
on the open database Open Food Facts56 (670,000 products referenced by 
consumers in April 2020), helping to change consumption patterns and 
influencing manufacturers, who will change the formulation of products 
which receive a low score.57

However, some authors have expressed concerns regarding the risks of this 
hyper-transparency: it is only partial and will guide our priorities (Gardner et al., 
2019), it could exclude small farmers (Jouanjean, 2019; Kos and Kloppenburg, 
2019) and it could require assistance from private intermediaries, increasing 
the asymmetric nature of information. Lastly, there is no guarantee that it 
will benefit farmers. It also assumes that consumers will be willing to pay 
for these attributes (quality, origin, social/environmental footprint). 

 

 Managing resources at a regional level 

Regional governance can be defined (Rey-Valette et al., 2011) as “a dynamic 
process of coordination on the subject of regional issues held between public 
and private stakeholders with multiple identities and asymmetric resources, 
working together to set objectives and initiatives by implementing multiple 
schemes centred around collective learning and which contribute towards both 
institutional and organisational innovation at a regional level.”

Agriculture is taking on an increasingly prominent role in regional projects, not 
only because of its impact on land planning, but also because of the reterritoria-
lisation of the food production, which is now seen as a way of promoting regional 
resilience (IPES-Food, 2016). The agroecological transition is strengthening the  
position of agriculture within this regional dialogue owing to the fact that 

56. https://fr.openfoodfacts.org/
57. https://www.franceinter.fr/yuka-l-application-qui-force-intermarche-a-revoir-ses-recettes
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landscape ecology – which is crucial to the success of the agroecological project – 
requires a collective approach at a regional level. Furthermore, the closing of the 
cycles (nitrogen and carbon), – an essential lever of agroecology, can take place 
beyond the farm at a regional level, employing a “circular biomass economy”. Digital 
technology is opening up various types of opportunities in this field.

Within regions, new biobased and circular economies are being established: 
agricultural waste is becoming a resource (Klerkx et al., 2019), with the recent 
emergence of specialist platforms, marketplaces for organic materials (e.g. 
Organix from Suez) or for trading food products with short shelf lives (the app  
toogoodtogo). Knowledge of the material flows involved at each stage of the 
process (production, processing, exchange, consumption, waste) is gaining interest 
when it comes to (i) questioning the use of natural resources and identifying 
any problems with competing uses (e.g. first generation biofuels vs. food use, 
feed for livestock animals vs. food for human consumption), (ii) understanding 
vulnerabilities both upstream and downstream (e.g. dependence on imports), 
and lastly (iii) estimating environmental footprints (e.g. carbon, energy, water, 
chemical pollution, soil use, etc.) (Bioteau et al., 2013). Over and above these 
purely quantitative aspects, involving both environmental science and digital 
science, the social sciences will have a vital role to play in understanding how 
the networks controlling flows or affected by them operate. There are two issues 
at stake here: the re-integration of agricultural production at a regional level 
(material and social integration) while staying within planetary limits. What is 
more, the deployment of a biobased economy at a European, national and local 
level will require consistency between levels and between regions when it comes 
to implementing plans of action; but, presently, there is little evidence of such 
a multi-level vision. 

Digital technology will also expand the “tool kits”, helping regional bodies to 
promote dialogue both within agriculture and with other regional stakeholders. 
This should help with the coordination, participation and education of stakeholders 
and with the adoption of new digital-based practices. More generally, it should 
serve the development and management of regional projects, ensuring their 
development models allocate an inclusive, explicit place to agriculture. 

Further research will be needed in digital science and technology in order 
to (i) compensate for the lack of data at a regional level and on systems about 
which there is little knowledge, (ii) improve the temporal and spatial modelling 
and representation of these systems and the visualisation of models’ outputs, 
(iii) promote mediation between stakeholders, and (iv) secure systems and in-
formation channels.    
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     �Supporting the transition: sharing data, 
information and knowledge

Farmers and sectors must be supported in the agroecological transition, as 
it brings with it a significant amount of risk. This support must be compatible 
with the agroecological approach, which promotes “individual and collective 
learning [as] a source of innovation” (Meynard, 2017), drawing upon: (i) modelling, 
combined with indications regarding uncertainty in order to identify bottlenecks, 
risks and capacity for resilience; (ii) collective learning; (iii) risk identification and 
socio-economic and the relevant support (Caquet et al., 2020). This chapter outlines 
the response from digital technologies when it comes to sharing and learning.  

 Digital technology: an asset for sharing knowledge 

With regard to the deployment of the principles of agroecology, traditional 
knowledge – often specific to regions (Altieri et al., 2012) – must be protected: this 
will involve strengthening human capital through training and participatory initiatives 
which take into consideration the needs, expectations and circumstances of small 
farmers (Calvet-Mir et al., 2018). Knowledge-sharing platforms, featuring different levels 
of mediation, facilitate the gathering, exchange and distribution of knowledge: videos 
on agroecological practices produced by mediators linked to farmers (AccesAgriculture, 
DigitalGreen,58 Osea, etc.) (Bentley et al., 2019), knowledge gathered from farmers 
(like with CONECT-e, which created digital commons on traditional varieties for 
preventing the erosion of knowledge and hoarding by commercial companies) 
(Calvet-Mir et al., 2018), social media platforms without mediation (YouTube), etc. 
Wyckhuys et al. (2018) identified two points which are important for the success of 
digital technology in the adoption of new practices: (i) guaranteed access to digital 
technology, overcoming technical, psychological and organisational obstacles, and 
(ii) using the knowledge and practices employed by farmers as a basis for devising 
digital-based training courses. Digital technology also makes it easier for parties to 
work together to create knowledge, an appropriate strategy for agroecology given 
the way in which it “combines different types of knowledge: traditional knowledge, 
indigenous knowledge and scientific knowledge, in addition to knowledge from 
farmers” (Milgroom et al., 2016). According to Wyckhuys, et al. (2018), this social learning 
is well-suited to dealing with agricultural problems in that it opens up a space for 
different points of view, recognising diversity and local knowledge. For this reason, 
these authors recommended drawing on participatory experiments employing the 
use of digital devices (tablets): the Digital Farmer Field Schools.

58. More than 5,000 videos, in 50 languages, produced over 10 years with support from DigitalGreen (www.
digitalgreen.org)

4.4
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However, there remain obstacles to exchanges between peers and individual 
learning, whether technological (identifying technology for capitalising on and 
promoting exchanges) or sociological (identifying which modes of learning to 
promote).

 A participatory approach and open innovation 

The participatory approach is the cornerstone of open innovation and living 
labs, open innovation initiatives in which citizens, residents and users are given 
a key role in research and innovation processes. In agriculture, living labs can be 
supported by research initiatives around experiments involving agroecological 
systems or implemented within regional innovation projects. Open innovation 
is vital to agroecology: devising “pathways” (plausible future scenarios) and 
transition scenarios (instantiation of the model in accordance with the pathways 
identified) (Antle et al., 2017), the best way of representing phenomena occurring 
at different levels (biological processes, farm management, optimisation) (Groot 
et al., 2012). Digital tools are extremely useful for these participatory processes, in 
that they can be used to (i) store information from participatory workshops; (ii) 
show and visualise data (current, future, dynamic views... of the region); (iii) equip 
participatory processes (modelling and scenario-building tools, serious games, 
etc.); (iv) share and disseminate knowledge; (v) create new knowledge, drawing on 
the diversity of knowledge, discussions and interactions; (vi) create links between 
farmers, between farmers and researchers, between farmers and wider society, 
etc. (Bergez et al., 2016; Enkel et al., 2020; Leveau et al., 2019). Some tools, such 
as boundary objects, make it easier to analyse compromises and multi-criteria 
representations during participatory workshops (Duru et al., 2015). This includes 
companion models (Barreteau, 2003). To deal with any issues stakeholders may 
have in understanding models and in order to stimulate interactivity (Bécu et 
al., 2008), these are implemented in the form of serious games, what is known 
as gamification (Seaborn and Fels, 2015); the past five or six years have seen the 
emergence of games on digital platforms, making it easier for people to express 
their points of view or preferences, facilitating co-construction (Speelman et 
al., 2014), helping to raise awareness among stakeholders (Prada et al., 2014), 
stimulating learning (the GATES59 project, Speelman et al., 2014), etc. To this we 
can now add augmented reality, which could assist stakeholders in visualising 
future diversified landscapes at the time of crop systems being designed.60

59. https://www.gates-game.eu/en/project/overview
The H2020 project “Applying GAming TEchnologies for training professionals in Smart Farming — GATES” (Grant 
Agreement number: 732358 — GATES — H2020-ICT-2016-1)
60. See #DigitAg PhD thesis “The use of digital technology in agroecology: Designing agroforestry systems 
using augmented reality” on www.hdigitag.fr
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At a sociological level, there are a number of obstacles to implementing a 
participatory approach: willingness on the part of farmers to head into uncharted 
territory, the capacity for collectively bringing about change, the capacity to 
gather and represent tacit knowledge, and the capacity to open up sources of 
information that will support change.  

 Farmers as data producers  

Although “multifunctional agriculture” has always existed (Renting et al., 
2008, 2009), a new function has emerged thanks to digital data collection tools: 
data production. 

Farmers can be committed to contribute to the digital capital at a regional 
level. Information – related e.g. to biodiversity, soil fertility, etc. – will be crucial 
when it comes to documenting, evaluating and paying for ecosystem services. 
Such information would be useful for the PES but the cost of gathering it is now 
such that payments for ecosystem services (PES) are distributed in a uniform way 
depending on the resources implemented (OCDE, 2011). In order to move from a 
resource-driven approach to a results-driven approach, it will be necessary to better 
characterise the environment, and to identify and quantify simple, measurable 
parameters representing how it works (Caquet et al., 2020). Looking beyond PES, 
farmers will contribute towards the creation of information commons, which 
Antle et al. (2017) view as a public good when it comes to public investment and 
political decision-making. Initiatives are already in place relating to data on soil 
quality (Della Chiesa et al., 2019) and biodiversity.61 Van der Burg et al. (2019) 
identified the capacity of digital agriculture to generate other services as a result 
of the data produced; research must be prioritised in order to clarify the social 
role played by farms, to stimulate imagination among stakeholders with regard to 
the other possible objectives which smart agriculture could serve, and to improve 
the way in which their relative values are understood.

Farmers are also producing data alongside – and for – research, the goal being 
to analyse and understand the biological processes underlying the provision 
of ecosystem services within new agroecological systems. Caquet et al. (2020) 
advocate new strategies “combining experiments carried out by researchers and 
the deployment of other data sources […]”, including experiments on farms (Cook 
et al., 2013). A number of authors see this field as a new avenue for research in 
agronomics (Reckling et al., 2020) for re-designing crop systems by understanding 
processes (Falconnier et al., 2016), carrying out variety testing in real-life  
 

61. http://observatoire-agricole-biodiversite.fr/
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conditions (Schmidt et al., 2018) and demonstrating new production systems 
(Leclère et al., 2018). Conducting experiments on farms has been made easier 
by automatic monitoring and measurement systems (Piepho et al., 2011) and 
precision agriculture (Adams and Cook, 1997; Panten et al., 2010), both of which 
reduce uncertainties linked to sampling and manual measurement.  

These strategies, employed by farmers for collecting data for use in research 
or environmental documentation, have encountered a number of scientific and 
technical obstacles (e.g. what variables to measure? Where? At what frequency? 
What data- and knowledge-sharing infrastructure should be employed?) and 
socio-economic obstacles (motivation to share data, the value of data, changes 
to the profession, data governance, etc.). 

  �Specific challenges facing the Global South
The majority of international organisations (FAO, 2020) and development 

funds (World Bank, 2019) see digital agriculture as something that will signi-
ficantly transform and improve the agriculture sector, food systems and trade 
for countries in the Global South (Lixi nd Dahan, 2014). In Africa, the reasons for 
developing digital agriculture are as follows: 

	• �digital technology will help to diversify the service economy, with the right 
conditions for creating jobs: a good level of IT training, applied research in data 
science and geomatics, and a population familiar with mobile phones (72% 
of the population in 2014)62;  
	• �this could impact many categories of agriculture and agricultural households; 
by promoting the inclusion of women and young people (El Hassane Abdellaoui 
et al., 2015) digital agriculture will counteract the rural exodus;
	• �Africa is a land of opportunity for agriculture, with vast tracts of land and 
the potential for the agribusiness sector to provide jobs within a range of 
agricultural sectors (Pesche et al., 2016).

The specific context of agriculture in Africa must be covered by digitalization:

	• �production systems are far more diverse than they are in temperate countries: 
inter- and intra-country diversity; diversity between agroclimatic zones, resulting 
in significant contrasts between agroecosystems (tropical and Mediterranean, 
arid and wet regions); the wide variety of contexts in rural regions, structures  
and land tenure systems; the coexistence of varied socioeconomic structures, 
 

62. https://donnees.banquemondiale.org/indicator/IT.NET.USER.ZS?end=2016&start=1960&view=chart
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with a high prevalence of families engaged in subsistence farming –, either 
commercially or in conjunction with other forms of work (75% of arable land 
in the world; Lowder et al., 2016), linked to a range of methods and practices 
and specialist structures for monoculture, often for export purposes;
	• �– production systems are also more complex: the high prevalence of integrated 
and multifunctional multi-species systems, such as agropastoral systems (in 
dry regions) or agroforestry systems (cocoa and coffee in wet regions) generates 
complex landscapes and organisational frameworks, with multiple rules and 
governing bodies for shared regional resources (pastureland for mobile pastoral 
systems, tropical forests), in circumstances in which regional information is 
sorely lacking and, when available, is rarely shared;
	• �distribution channels are highly varied (short, local distribution chains primarily 
for food production; regional and national sectors for supplying towns and 
cities; and international sectors, which take in products from small producers) 
and can be fragile (lack of infrastructure, fragmentation of the offer, difficulties 
adapting to standards, etc.); 
	• �as has been the case in the North, there has been a significant change to food 
systems, accelerated by the emergence of new stakeholders and investors 
in agricultural supplies, production and agricultural marketing – generating 
tension as a result of the co-existence of different agricultural models – and 
by digital tools, with e-commerce platforms and the revolution in decision 
support and regional information systems (the use of drones for proxy detection, 
information systems on markets, enterprise resource planning, etc); it is also 
worth noting that digital technology is boosting the participation of women 
and young people;
	• �there is a distinct lack of organisation with regard to agricultural data: no 
metrics (measurement data), no pooling and archiving of data, weaknesses on 
the part of certain public information systems – in terms of property (property 
deeds, land registers), resources (soil quality, water availability), the quantities 
of inputs used, the quantities produced and origin (traceability); 
	• �intermediation, communication and modes or levels of interaction (information 
exchange) between stakeholders within the agricultural sector are made 
more complex by low levels of training among users, illiteracy and the number 
of different dialects, paving the way for the development of ad-hoc digital 
solutions (farming advice using voice assistants speaking regional dialects).

When we are targeting the needs of “intermediary” and multifunctional farms 
engaged in multiple activities, as well as their production ecosystems, i.e. logistics 
channels and regional information, we have to thrown up a number of obstacles. 
Therefore, the objective will be to develop digital technology capable of tackling 
the following priorities:
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	• �promoting the development of “local and regional food systems” centred 
around alternative production models (agroecology, biomass recycling, etc.) 
	• �contributing towards the structuring of information capital in regions in which 
data is sorely lacking, benefiting everyone (individual holdings, intermediary 
organisations, institutions, etc.); 
	• �facilitating communication with farmers, overcoming issues such as poor 
network coverage, inequality in terms of access to energy, illiteracy, multiple 
languages and dialects, etc.;
	• improving supplies in distribution channels.

Both on farms and in the supply chain, the scientific and technical obstacles 
are broadly the same as those encountered in the Global North: a need for 
technology capable of anticipating risks (early detection of errors, customised 
decision making support, etc.), collective management of rare resources such as 
water or organic matter, access to markets (information, logistics). However, these 
are exacerbated by the specific challenges facing the Global South: diversity in 
terms of systems, solvency, the technical aptitude of farmers, illiteracy, lack of 
communication infrastructure (networks, data centres, etc.) and energy distribution 
infrastructure. Over and above these technical aspects, political, social and eco-
nomic considerations must also be explored in order to anticipate the impact 
digital technology will have on businesses, agricultural households engaged in 
multiple activities, markets, local sectors and global value chains, companies and 
regions (Tsan et al., 2019), given the number of unanswered questions regarding 
the use of digital technology in agriculture in the Global South (Bonnet et al., 
2019; Deichmann et al., 2016; Pingali, 2012). The conditions for innovation and 
the transition towards digital agriculture will need to be studied at both an 
institutional level (exploring the political, socio-technical and socio-economic 
context required in order to develop digital agriculture and, more generally, the 
digital economy) and a process level (identifying innovation processes that will 
lead to applications with a proven impact on family agriculture), with questions 
regarding the research methods employed in digital agriculture and the innova-
tion systems that will need to be put in place.
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Conclusion
This chapter presented an overview of the fields in which digital technology 

could contribute towards the scaling up and development of agriculture, to meet 
the principles of agroecology with regard to production and integration into 
its social and economic environment (value chains, regions, etc.). This overview 
revealed technological and methodological needs in terms of observation, data 
science, modelling, knowledge extraction, data storage and exchange and specialist 
agricultural equipment for assisting humans, highly sought after in agroecology. 
But although there could be many opportunities, there are also risks to deve-
loping digital technology in agriculture. These must be identified and analysed 
(Chapter 5) in the interests of guiding future research (Chapter 6), the goal being 
to develop responsible digital technology for sustainable food systems that are 
compatible with planetary limits.  
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The ongoing digital revolution has had a significant impact on the world we 
live in. Chapter 4 explored the opportunities opened up by this new technology, 
which could help to make agriculture more agroecological, more sustainable and 
more productive. More broadly, the disruptive potential of digital technology 
seems boundless, and the digital revolution could be seen as a revolution 
of empowerment, bringing about a considerable increase in the capacity of 
stakeholders to efficiently transform all areas of society – not just agriculture, 
but also health, transport, culture, the environment, etc. Observing, predicting, 
anticipating and controlling the natural and social processes at play on Earth 
could soon be possible through digital technology. 

The growing development of digital technology in the agricultural sector has 
raised a number of questions with regard to delivering on promises made and 
the social acceptability of the accompanying transformations. This awareness of 
the risks inherent to the digital revolution is not specific to agriculture. Analysis 
conducted on issues linked to democracy, the economy, the environment, work, 
education, information, etc. have confirmed the extent of the changes that are 
taking place, stressing how important it is for society to tackle challenges linked 
to digital, incorporating the fact that technology is not neutral (Stiegler, 2015; 
Boullier, 2019).

Despite the wide range of opportunities it opens up, we feel that the development 
of digital technology in agriculture brings with it a number of risks: not living up to 
expectations in terms of agriculture and food systems being made more environ
mentally-friendly; exacerbating the negative impact of digital technology on society 
in terms of a loss of autonomy and widening inequality; sliding towards a loss of 
digital and food sovereignty; and aggravating vulnerability and weakening the 
governance of an overly complex food system, aggravating vulnerability, weakening 
the governance and reducing the yields of an overly complex food system. 

Exploring these risks will give citizens, farmers and researchers the opportunity 
to reflect on their practices, their choices and their priorities, guiding them and 
helping digital technology to become more responsible in order to minimise 
these risks. This chapter will present an overview of these risks.

5_Risks
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     �Compromising the ecological transition  
in agriculture  

There are a number of factors which could impact the capacity of digital 
technology to contribute towards the ecological transition. Some see digital 
technology as an “obstacle” in itself, in that it is deployed in an attempt to treat 
symptoms as opposed to correcting the causes of problems and hazards facing 
us, arguing that its widespread deployment is an evasion tactic preventing any 
possibility of more systemic, radical change. The use of digital technology in 
agriculture is also seen as stretching thin the ties still linking man and nature. 
Lastly, although little is known about it and it is rarely taken into consideration, 
digital has its own environmental footprint, which could call into question any 
environmental benefits. 

 The agroecological transition and technological lock-in  

Technological or socio-technical lock-in, a concept taken from theories of 
innovation (David, 1985; Arthur, 1994), refers to such situations where an innovation 
is blocked as a result of the economic and technological strategies implemented 
by different stakeholders – known as the sociotechnical system – coming together 
in such a way as to prevent any destabilisation or change, even if the innovation 
could be widely beneficial.

This concept is often raised in relation to the agroecological transition 
(Meynard, 2018). It aims to guide production systems towards practices which 
use fewer chemical inputs. This is done with reference to two specific features 
of agriculture in developed countries: i) crop protection based primarily on the 
use of pesticides and ii) the increasing specialisation of production alongside 
the increasing scarcity of holdings which combine crops with livestock breeding.   
The systemic, integrated way in which the food supply chain is structured around 
these aspects is an obstacle for the agroecological transition in that all economic, 
technological and regional stakeholders must act in concert with each other. 

This raises the question: could the development of digital technology in 
agriculture also carry the risk of further technological lock-in, thereby limiting the 
chances of success for the agroecological transition, in all its diversity? Digital would 
appear to be an excellent driver of integration between the different stakeholders 
within the agricultural supply chain, at all levels. It is also, broadly speaking, 
compatible with the current agricultural model’s sociotechnical system, particularly 
in terms of its associations with agricultural machinery (tractor-GPS-modulated 

5.1
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application software) or satellite technology, highlighting the objective of greater 
control over the consumption of inputs (Labarthe, 2010). In this way digital 
technology could reinforce the technological lock-in of the current situation, 
further restricting the possible emergence of alternative innovations promoting 
agricultural practices which are radically more environmentally-friendly and less 
production-driven, and which could eventually help the current system to evolve. 
Digitalisation can thus be characterised by a sort of path dependence63, excluding  
alternative forms of agriculture (Clap and Ruder, 2020). The concern is not, therefore, 
linked to digital agriculture “not being environmentally-friendly”, but rather to the 
digitalisation of agriculture reinforcing the dominant, production-driven model, 
when in fact the goal is to make agriculture more agroecological.  

 Taking humans further away from nature 

The digital revolution and the new technology it has brought with it have 
transformed our perception of the world, through interfaces designed to expand 
and enrich our physical and cognitive capacities. 

In agriculture this has resulted in “augmented farming” through the use of 
smart robots and sensors, forming a new interface between farmers and the living 
world of their farms, animals or plants. Research has been carried out in the social 
sciences on the consequences of these new interfaces, particularly in livestock 
breeding, exploring whether or not “machines separate humans from matter” 
through data or if robots are “a liberating or restricting force for animals and 
humans” (Lagneaux and Servais, 2014). Although little consideration has been 
given to the world of plants, we have started to see some research into the way 
in which digital technology is transforming our relationship with plants (Javelle 
et al., 2021). 

Over and above the risk of losing our material connection to nature through 
an increase in digital interfaces, a number of authors have also tackled the issue 
of the reification of the living world brought about through precision agriculture, 
and the ethical questions this raises (Bos et al., 2018). This is particularly true in 
livestock farming, some seeing the growing engineering and artificialisation of 
agricultural production as evidence of possible transanimalism64, geared towards 
developing “augmented” animals in order to not only improve their well-being but 
also to boost productivity. What impact will this reductionist approach – which 
reinforces the perception of the animal machine (Meuret et al., 2013) – have 
63. Having first emerged in political science in the nineties, path dependence is a term used to describe how 
influential decisions made in the past and decisions taken by political bodies are on present decision-making.
64. Droit Animal Ethique & Sciences (2017). Trans-animalism, augmented animals and cyborg animals: towards 
the status of “sub-machine”? 93, https://www.fondation-droit-animal.org/documents/revue93.pdf
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on human-animal relations (Larrère and Larrère, 1997) or the efficiency of the 
production system as a whole? How do citizens view this type of agriculture? 
These are all issues which have been explored in the humanities in conjunction 
with agronomy.

 Contributing to digital’s growing environmental imprint 

Digital technology has an environmental impact which has been given little 
or no consideration in agriculture. As is the case with other areas of society, the 
development of digital technology in agriculture will involve an increase in the 
use of  equipment for data capture, transfer (deploying wireless sensor networks, 
or even employing the use of 5G), storage and processing (see platforms offered 
by tractor manufacturers), requiring increasingly powerful and energy-intensive 
electronic components and systems, with all of the environmental consequences  
65that this entails (resource depletion, climate change, etc. (Marquet et al., 2019))..

The agricultural supply chain is currently responsible for 13% of overall 
energy consumption in France (particularly for maintaining the cold chain); 
across all sectors digital is responsible for 12% of electricity consumption 
and 3% of total energy consumption, the biggest contribution coming from 
video streaming. Although there does not seem to be anything particularly 
alarming about current statistics for agriculture, attention will need to be 
paid to the rising contribution made by digital agriculture.

The increase in the number of various different types of connected sensors 
will result in greater reliance on resources such as the precious metals (silver, 
gold, palladium) and rare-earth elements (neodymium, praseodymium, gallium, 
germanium, etc.) found within these electronic components, the extraction and 
separation of which uses up vast quantities of energy and water. The geographical 
distribution of production sites is also highly uneven, the majority currently found 
in China (Pitron, 2018). This will also pose challenges when it comes to end-of-life 
management for materials, with the not properly controlled risk of the spreading 
of technological waste, similar to what we have seen with the reprocessing of 
mobile phones in France: only 15% of handsets are collected out of more than 
25 million phones sold every year, despite the existence of a specialist stream for 
the recycling of electronic waste (Blandin, 2016).

65. https://www.lemonde.fr/blog/binaire/2019/01/29/impacts-environnementaux-du-numerique-de-quoi-parle-t-on/
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     �Widening inequality and power imbalance
One of the risks associated with the digitalisation of agriculture, first flagged up 

in the nineties (Wolf and Buttel, 1996), relates to the increasing industrialisation 
of agriculture, the social and environmental consequences of which are a source 
of controversy. It is argued that there will be a sort of co-evolution between the 
roll-out of digital technology and production becoming concentrated in ever 
greater production units, driven by a desire for greater efficiency and productivity 
at the expense of other types of agriculture or groups of agricultural workers. 
These risks have been discussed using strategies from different disciplines in the 
humanities, primarily sociology, political science and institutional economics 
(Klerkx et al., 2019).

 Risks of exclusion  

There are a number of risks of exclusion associated with digital agriculture, 
linked to various different debates on the subject of the diversity and coexistence 
of agricultural production models.

The first risk relates to agricultural holdings with a small economic impact. 
The issue of small farms being excluded is not specific to digital technology: it 
has been shown how the modernisation of agriculture in France has excluded 
small agricultural holdings, chiefly through the economies of scale which are 
typical of technological development (Deléage, 2013). Digitalisation is part of 
this technological trajectory for agriculture, which is centred around increasing 
the size of agricultural holdings. It could even accelerate it given that, by its very 
nature, some digital technology (such as that based on satellite imaging) requires 
holdings of a minimum size in order for it to be profitable. This risk of exclusion 
can be compared to the incompatibility outlined in 5.1 between digital technology 
and certain ways of making agriculture more ecological, which require a more 
extensive overhaul of production systems. 

The second risk is linked to aggravating the precarious nature of agricultural 
work, at a time when there is a growth in the percentage of salaried workers 
in agriculture and a desire to reduce labour costs in the interests of increased 
productivity. The development of robotics – which could either replace human 
labour or limit the human workforce to certain, more qualified positions – could 
further exacerbate precarity among certain groups, particularly the poor in society 
or immigrant workers. 
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The third risk is linked to the difficulty of accessing digital technology and/
or the skills needed to use it, which could also drive exclusion in the agricultural 
sector. This debate is partly linked to the digital divide and the risk of excluding 
certain rural areas lacking in digital equipment at an infrastructure level. 

 A loss of autonomy for farmers  

Research has been carried out in the field of rural sociology to assess the 
potential implications of digitalisation on the decision-making autonomy of 
farmers and the meaning they place in their work. This could have significant 
repercussions for the cultural fabric of rural areas and farmers in that it will 
alter what it means to be a farmer (Burton and Riley, 2018). Digitalisation may 
bring about a shift in agriculture from “practical”, experience-based management 
towards a data-driven approach. It could “discipline” working routines for farmers, 
conditioning them through a new form of “algorithmic rationality” (Miles, 2019). 
As a result, digitalisation which is not controlled by farmers is a topic for debate.66  
Questions have also been raised regarding the effect of digitalisation on the  
autonomy of farmers, including a fear that farmers could become “data workers” 
(Rotz et al., 2019).

 Upstream and downstream control 

Another issue relates to the imbalance between agriculture and its upstream 
and downstream sectors, which digitalisation could exacerbate. Agriculture has 
often been described as a sector that is dominated by upstream and downstream, 
and particularly by its upstream (mechanisation, the chemical industry, seeds/
grains, etc.) when it comes to innovation dynamics. A number of authors have 
questioned the role played by digitalisation in transforming (or exacerbating) the 
balance of power between agriculture and other sectors.

Upstream, digital technology could increase farmers’ dependency on certain 
inputs (pesticides, mineral fertiliser, etc.) while optimising and limiting their use. 
This paradox can chiefly be explained by the fact that digital technology takes 
the form of specialist equipment which embeds models, standardises decision-
making and leads to asymmetry of knowledge. This is changing the way in which 
knowledge is controlled (Bronson and Knezevic, 2016).

66. https://www.amisdelaterre.org/communique-presse/nouveau-rapport-agriculture-et-numerique-vers-une-
fuite-en-avant/



105

Downstream, new tools for sharing and controlling information (particularly 
blockchain and big data technology) have the capacity to change or strengthen 
the positions of different stakeholders in innovation ecosystems and value chains. 
Questions relate to the consequences on value sharing, how sectors are governed, 
the risk of forms of subsidiarisation within agriculture and control by agribusiness 
companies situated downstream from agriculture.

One new issue relates to the role which new stakeholders – firms in the digital 
technology sector, from startups to multinationals – could play; digital giants 
have, for example, made significant investments in agriculture, sometimes in 
conjunction with equipment manufacturers. Alongside this investment, a number 
of questions have been raised regarding data governance in agriculture, and the 
capacity of stakeholders in the agricultural sector to control knowledge integrated 
into digital technology and to grasp the value which it produces (Carbonell, 2016).

Digital technology is therefore associated with cross-sectoral dynamics, calling 
for multidisciplinary research to be carried out on the resulting institutional 
changes and the risk of potential lock-in (Carolan, 2020; Labarthe, 2010).

 Accessing information and training - what role can advice play? 

A fundamental feature of digital technology is that it is not neutral for innovation 
systems and agricultural knowledge: it has the capacity to completely overhaul 
the way in which knowledge and information within the sector is constructed 
and disseminated (Busse et al., 2015).

Research carried out recently has revealed both the potential of digital tech-
nology and the threat it poses to certain stakeholders or roles within innovation 
systems. This is particularly true for farming advice – its participants, methods, 
content and even legitimacy are all called into question by digital technology 
(Fielke et al., 2020).

However, there are a number of issues linked to the role advisors or other
intermediaries in innovation systems can play with the advent of digital technology: 
how can more and more information be integrated without generating excess 
stress or mental strain for farmers? Who will be in a position to evaluate the 
efficiency, durability and suitability of digital tools? Who will have the capacity 
to monitor the content of knowledge (agronomic models, validity testing, etc.) 
contained within these tools and applications?

5_Risks
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The question of digital’s impact on the dissemination of information and 
knowledge within the agricultural sector also takes us back to the issue of 
inequality, as discussed in the previous subsection. This inequality is linked 
to issues surrounding accessibility (financial, cognitive, connectivity) to digital 
technology. The issue of unequal access to advice and information is not a new 
one (Mundler et al., 2006); the goal will be to determine whether digital helps to 
reduce or exacerbates this inequality. This refers us back to issues such as cost 
and the digital infrastructure of rural regions, but goes further than that; it will 
be necessary to train rural and agricultural communities, in all of their social 
diversity, giving them the opportunity to acquire the skills needed to use this 
technology in an effective and appropriate manner. 

     �Loss of sovereignty
The final report from the 2019 French Senate inquiry “Digital Sovereignty” 

(Longuet, 2019) proved that the issue of digital sovereignty has never been more 
topical. The report was keen to stress that this is a threefold problem for France, 
relating to “ethics, security and economic liberty”, at a time when our societies are 
finding their values are being questioned and humans are “increasingly collections 
of data to be exploited”. Although agriculture is an area in which the question 
of national sovereignty – at both an individual and a collective level – may be 
thought of as a given (production is by nature rooted in regions, there are strong 
cultural ties to the land, public authorities have a track record of supporting and 
guiding agricultural production, the importance of public research into agronomy 
is recognised in France, the CAP is a cornerstone of the European project), the 
development of digital technology is bringing forth new challenges linked to 
digital sovereignty (Klerkx et al., 2019).

 A loss of autonomy over food supplies 

The increasing digitalisation of the supply chain – from producers to processors 
to distributors to consumers –, the primary aim of which is to bring production into 
line with needs, to minimise logistics and processing costs and maximise customer 
satisfaction, could potentially lead towards ever greater integration of agriculture. 
Sovereignty becomes an issue when monopolies develop, as can be seen with 
the current offensive being led by digital giant Amazon in the food distribution 
industry67 Also worthy of note is the rapid development and use of connected 
tools on smartphones for evaluating food and other consumer products (in terms 
of environmental impact, nutritional value, etc.), which could have a significant 

67. https://siecledigital.fr/2020/08/31/amazon-ouverture-de-son-premier-supermarche-connecte-amazon-fresh/
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long-term impact on modes of consumption68 There is no guarantee of democratic 
control over these new tools, resulting in the risk of a monopoly developing. Lastly, 
the economic model for the digital transition is partly based on start-ups, some of 
which have designs on being bought over by major groups. This inevitably raises 
questions linked to national sovereignty with regard to the digital technology and 
services developed for agriculture and the data it produces (Schneider, 2020).

 Seizure of agricultural data 

Digital sovereignty entails control over data. Whether it is down to major  
manufacturers of agricultural equipment or digital giants, there is a risk of 
agricultural data being seized, either by access to data simply being restricted 
or by data being opened in formats which are not practical to use. Agricultural 
machinery could act as a Trojan horse for the collection of data in agriculture. This 
includes milking robots in livestock breeding, but also tractors and harvesting 
machines for field crops. These agricultural machines feature an increasing 
number of sensors, gathering data on tasks performed which is then shared with 
manufacturers. Purchase agreements govern their use in a way which benefits 
manufacturers (it is often stipulated that farmers must share all agricultural 
data). This helps to maintain a lack of transparency along the data chain (what 
does the data contain, where is it going, and for what purpose?), resulting in a 
near lock-in situation (it is sometimes very difficult for farmers to gain access to 
their data, and even harder to put it to any purpose) (Carbonnel, 2016). There is 
an awareness within the profession of this risk, farmers in France having come 
together via the Data Agri69 charter put forward by two trades unions, the FNSEA 
and the JA. This is aimed at improving the handling, transparency and security of 
agricultural data in contracts. France would appear to be somewhat ahead of the 
game at a European level when it comes to reflecting on the use of agricultural 
data, building independently on the GDPR regulation on personal data.

The sharing of agricultural data is a priority both for the agricultural profession 
and for research in agronomy, the goal being to support the development of 
agronomic knowledge and digital technology and services in agriculture. This is a 
key issue in relation to digital sovereignty. Agdatahub70, a data exchange platform 
for the agricultural sector developed by a number of agricultural organisations 
(chambers of agriculture, technical institutes, etc.) and businesses, is a good 
illustration of how a trusted system can be built around data (French companies 
DAWEX and 3DS OUTSCALE were selected for the Agdatahub platform).

68. https://www.capital.fr/conso/peut-on-faire-confiance-a-yuka-pour-ses-courses-1319721
69. https://www.data-agri.fr/
70. https://agdatahub.eu/
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 A loss of control over production equipment 

Sovereignty is also an issue when it comes to control over production 
equipment in agriculture. Digitalisation is resulting in this equipment becoming 
increasingly complex (Bournigal, 2014) and maintenance becoming more and 
more difficult, for both farmers and distributors, who are experiencing a loss 
of technical autonomy. The same is true when it comes to training: teachers at 
agricultural high schools have encountered difficulties training future professional 
users of agricultural equipment in what is a high-tech and constantly changing 
field (Isaac and Pouyat, 2015). 

Another issue linked to sovereignty is the lack of French companies among 
the world leaders in agricultural machinery (AGCO, John Deere, New Holland, Lely, 
De Laval), although France does boast a number of pioneering companies when 
it comes to mobile agricultural robots (e.g. Naïo Technologies).

 A challenge for cybersecurity 

In the field of cybersecurity, the first challenge concerns the risk of attacks via 
connected objects and sensors (Dhar, 2021). This either involves the connected 
object itself becoming a source of a denial-of-service type attack, or it is hacked 
for malicious purposes. The latter example is the most troubling, particularly in 
the case of highly-integrated agricultural systems where farmers have granted 
significant autonomy to automatic control systems (automated greenhouses, 
milking robots, etc.). The fact that these devices are often manufactured outside 
of Europe and that we have no say over design (to ensure security by design), 
means we must be even more vigilant as to the risk of backdoors. 

A second challenge relates more broadly to protection against the recovery 
and hacking (theft, modification, destruction) of agricultural data. The choices 
made in designing the platforms used to share this data clearly have a significant 
impact on the possible level of protection. Although the most notable examples 
of cyberattacks have targeted institutions of key strategic importance to society 
(hospitals, airports, banks, etc.), the crucial importance of our food production 
and consumption systems could see them becoming potential targets in the 
future (Gupta et al., 2020).
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     �Accentuating vulnerabilities  
and negative yields 

 The vulnerabilities of the agrifood system 

As described in 2.3, modern agriculture interacts with a range of sectors 
and stakeholders of various types and sizes. This results in very “long” supply 
chains and decision-making systems. Agricultural activity has also expanded 
into increasingly specialist areas (Bowler, 1986). This system is centred around 
a large number of asymmetrical relationships of dependency between these 
stakeholders. It also centres around the intensive use of technology, which users 
are gradually becoming dependent on. The digitalization of this system could 
increase dependencies71 between several of its elements and create new ones. 
These developments increase the risk that the partial or interrupted functioning 
of one element could paralyze the entire system. These changes are increasing 
the risk of an error affecting one element paralysing the entire system. These 
issues (blockages, interdependency) were highlighted during the Covid-19 crisis, 
with the emergence of a number of areas of tension in different parts of the 
agrifood system72. By disrupting supply chains, the Covid-19 crisis also resulted in 
a shortage of goods – including copper and microchips – in a number of sectors, 
highlighting the risks linked to dependency on such goods (Bouissou and Albert, 
2021). This warning is all the more striking given that a number of crises expec-
ted over the next two decades (regional and systemic),73 most notably peak oil 
(Delannoy et al., 2021), are likely to have a far greater impact on society and the 
agrifood system in particular (Servigne, 2014). At a time when increasing the 
resilience of the agrifood system has become critical, its digitalisation runs the 
risk of making it more vulnerable. 

 Increasing complexity, diminishing returns and associated risks 

As discussed earlier, the agrifood system is centred around a number of 
increasingly specialist regions, sectors and stakeholders, of various types and 
sizes. It is also centred around a number of regulatory mechanisms and various 
relationships of dependency. Agriculture and its upstream and downstream 
sectors can now be said to form a complex sociotechnical system in the sense 
understood by Tainter (Allen et al., 1999). 

71. See section 5.1 (“Technological lock-in and the agroecological transition”) and section 5.2.
72. This includes risks linked to logistics and halting migratory flows, in addition to the instability generated by 
the introduction of non-collaborative, “every man for himself” national policies.
73. The probability and intensity of which are set to increase in the decades to come. See Chapter 2.
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Tainter demonstrated that human societies have a tendency to become more 
complex as they solve the problems facing them – this is because the solutions 
deployed require the addition of new elements to the system and the introduction 
of new regulations (Tainter, 1990; Chambaz, 2019). Ultimately, this complexity is 
“paid for” through energy costs: the more complex a society becomes, the more 
energy is required for its basic functions (Tainter, 2016). This problem is exacerbated 
by the fact that this increasing complexity follows the law of diminishing returns: 
above a certain threshold, the benefits of a society increasing in complexity grow 
more slowly than the costs, until a critical situation is reached at which point costs 
may be higher than the benefits74 (known as negative returns), as was the case 
prior to the collapse of a number of civilisations (Tainter, 2009). The challenge 
of complexity is keeping overall energy costs lower than the profits it brings in; 
otherwise there is a risk that the evolutionary trajectory of the system will get out 
of control and that any attempt to correct the system will only result in rendering 
it more volatile, vulnerable and uncontrollable.

The food and agricultural system is already a particularly complex sociotechnical 
system, the overall costs of which include indirect costs (sometimes very far 
removed) linked to negative externalities such as environmental, health and 
sociopolitical issues, which are either invisible or ignored by the vast majority of 
stakeholders (see 2.1). Our inability to evaluate these consolidated overall costs 
(energy, materials, pollution) and to fully grasp the aforementioned dynamic makes 
us liable to take major risks each time the system develops further complexity.

For this reason, it will be necessary to explore the impact of the development 
of digital technology in relation to this risk, particularly in agriculture. Indeed, 
as was discussed previously, the increasing digitalisation of the agrifood supply 
chain risks making this system more complex and strengthening or expanding 
ties and dependency. Uncontrolled use of AI and big data75 could trap us further 
in a spiral of increasing complexity. 

74. The phenomenon of diminishing returns followed by negative returns has been widely studied  
and documented, including in agriculture (Brue, 1993), in security (Elhefnawy, 2004), hydrocarbon extraction 
(Tainter and Patzke, 2012) and, more generally, in global macroeconomics (Elhefnawy, 2008).
75. With this technology the quantity and the complexity of the services and materials required will significant-
ly increase (data generation, circulation, storage and processing – sensors, platforms, networks, etc.).
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Conclusion
This chapter has covered a number of risks which the development of digital 

technology in agriculture has brought with it. These risks vary in nature and relate 
to economic, political, societal, psychological and environmental dimensions, 
among others. These risks could potentially be inherent to the deployment of 
this technology, and could be unavoidable or event uncontrollable. How this 
technology is deployed and used will obviously depend on upstream research, but 
also – and most importantly – on how stakeholders (citizens, farmers, stakeholders 
in agribusiness and the food industry, politicians) engage with it, as well as the 
general functioning of society (economic models, political regimes, standards 
frameworks, ideologies, etc.). It has long been understood how difficult it is for 
societies to control the development of technology (Ellul, 1977). It will be essential 
to take all of these factors into consideration when guiding future research in the 
field, as we have sought to do by identifying the challenges outlined in chapter 6 
for making digital responsible, relevant and shared.  
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This chapter highlights the needs and challenges linked to the development 
of responsible digital agriculture in the interests of promoting agroecology, 
agricultural diversity (including family agriculture) and sustainable food systems. 
The aim is to look beyond the state-of-the-art (Chapter 3) and to respond to the 
opportunities presented by digital technology for the agroecological transition 
and for balancing out value chains (Chapter 4), while avoiding the pitfalls that have 
been identified (Chapter 5). The focus will be on the challenges facing technological 
research, while acknowledging the associated economic and organisational 
challenges, particularly relevant to agriculture. 

Based on our needs analysis for promoting implementation of agroecology 
and balancing out value chains, the chapter is divided into four sections:

	• improving collective management, including at the regional level;
	• improving farm management;
	• balancing out the value chain, both upstream and downstream;
	• creating and sharing data and knowledge.

     �Providing digital tools for collective 
management at a regional level 

Three key areas have been identified for overcoming the obstacles linked to 
the use of digital technology for land management (chapter 4.3):

	• measurement and monitoring on a large scale;
	• data visualisation;
	• digital devices for participation, mediation and governance.

 Monitoring and measurement at a regional level 

The ambition to make agriculture less artificial, getting the most out of local 
assets and reusing natural resources, will be determined by the capacity to take 
advantage of material flows, the potential of biological regulation and functions 
beyond the farm (ecosystem services, land ecology, etc.). Many of the various 
different interactions can only be understood through a systemic point of view. 
This extends the scope of our consideration, both in space and in time: some 
characteristics can only be appreciated at a regional level, such as the extent to 
which a piece of land can be crossed (which will depend on the intensity of green  
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and blue belts76 on it); while others must be considered over time, such as the 
capacity for resilience and speed of recovery when faced with climatic hazards. 
Therefore, if we want to employ the principles of agroecology, we must quantify 
parameters which are difficult to detect using traditional methods. This calls 
on the need for measurement and monitoring, evaluation (modelling) and the 
management of data on a large scale. 

In terms of measurement and monitoring, the aim will be to identify data which 
is relevant, useful and currently missing for collective agricultural management 
at a regional level and to develop the tools for obtaining it, with the following 
challenges:

	• �Measuring new, difficult-to-grasp parameters (such as biodiversity, soil/
water quality, etc.) as non-intrusively and as frugally as possible.
	• �Adjusting sampling frequency (temporal and spatial), a crucial component 
of information theory. Systems either collect data regularly – at different 
levels of granularity in time and space (sensor networks) – or sporadically 
(through crowdsourcing, mobile applications, mobile collection vehicles, 
robots, drones, etc.). Networks must adapt to these types of data, which 
feature different traffic patterns, in order to be able to convey it within 
the time limit with minimum data loss. This is applicable at all levels and 
is dealt with in greater detail in section 6.2.
	• �Managing heterogeneous data. This results from diversity in terms 
of the objects observed, sensing and collection techniques (including 
crowdsourcing), stakeholders, parameters measured, formats (value, 
images, localisation, etc.), metrological properties (precision, frequency, 
etc.). In order to deal with this heterogeneity, appropriate filtering and 
fusion methods will need to be developed. It will sometimes be possible to 
perform fusion at different levels and more or less iteratively, factoring in the 
uncertainty linked to each piece of data, the variability of this uncertainty 
and any consequences it may have on the rest of the information chain. 
These questions are applicable to all types of data – physical, biological, 
economic, social, etc. In order to produce coherent reports (e.g. on material 
flows) and the corresponding uncertainties, mathematical and computing 
tools for data reconciliation will be employed (these tend to be based on 
constrained optimisation) (Courtonne et al., 2015).

76. The term “green belt” is used to refer to natural and semi-natural land environments, while “blue belt” 
refers to wetlands and aquatic environments (rivers, tributaries, ponds, peatlands, etc.). The term “green and 
blue belt” refers to a set of ecological networks allowing populations of species to move around. These are 
comprised of wildlife corridors which connect reserves where biodiversity is richest and best represented. 
These corridors can be linear (hedges, along footpaths, grass strips…) or various different types of landscape 
structures (https://dicoagroecologie.fr/encyclopedie/trame-verte-et-bleue/).

https://dicoagroecologie.fr/encyclopedie/bande-enherbee/
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	• �Data governance, an issue which is exacerbated in multi-source data systems. 
This is a general question, which will be explored in 6.4.

In the Global South these needs are becoming ever more pronounced: as 
outlined in section 4.5, information capital is sorely lacking in these countries at a 
regional level. This capital is essential for national administrations (for agriculture) 
and local authorities, producer organisations, research bodies, etc. when it comes 
to open innovation, anticipating risks (climate risks, health risks) and improving 
the organisation of regions and sectors. In this context our research will need to 
take into consideration additional difficulties resulting from the digital divide, 
illiteracy, multiple dialects, etc. But these difficulties also provide us with avenues 
to explore with a view towards rethinking our systems and methods and adapting 
them to this context.

 Visualisation 

Our visualisation methods will need to be revolutionised for data management 
at a large regional level. Given its particularities, the agricultural sector has raised 
research questions with no current equivalents in the field of visualisation, such as:

	• �visualising multi-scale, heterogeneous data, sometimes in large quantities 
and sometimes rare: spatial data, symbolic data, temporal data, variable data, 
incomplete data, uncertain data, erroneous data, semi-quantitative data and 
even qualitative data depending on variations in structure such as mapping 
(GIS), images (from satellites, drones), time series, graphs and networks; 
	• �visualising extreme scales, connecting them in a fluid and clear manner 
– short-range and long-range (time, geographical, etc.) –, and developing 
suitable and appropriate tools for aggregation and statistics;
	• �revealing new information semi-automatically by comparing maps or time 
series, highlighting symmetries, regularities, trends, correlations, etc.;
	• �meeting contradictory needs such as, for example, the visualisation of 
massive data, but with mobile applications (mobile phones, tablets, etc.), 
or guiding users while respecting their autonomy;
	• �finding innovative ways of representing complex objects, dependencies 
or models, capable of being used by individuals from a diverse range of 
backgrounds..

These questions open up new prospects for certain basic subjects, including 
the visualisation of uncertainties (Boukhelifa and Duke, 2009; Potter et al., 2012) 
and progressive visualisation (Fekete et al., 2019), at the interface between vi-
sualisation and AI. It is worth noting that, with regard to visualisation, there has 
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not been much discussion on issues surrounding privacy and usage rights for 
data when it comes to building trust (Charvat et al., 2018). The questions listed 
above could eventually lead to research being carried out on visualisation and 
HCI specific to the agricultural sector.

 Digital devices for participation, mediation and governance 

The multi-actor approach is essential at a regional level and requires support 
tools: the knowledge production mode is changing, with transdisciplinary research 
requiring significant contributions from external stakeholders, something which 
may be easier in the digital era (Bergez et al., 2019). In sectors operating at a 
regional level, it is increasingly common for individual and collective interests 
to come into conflict with each other (Ryschawy et al., 2019). New digital devices 
from regional engineering are anticipated, to facilitate dialogue within the world 
of agriculture and with other regional stakeholders (figure 2)..

Figure 2: Tools and devices for regional governance engineering (Rey-Valette et al, 2011)..
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These digital tools and devices could fulfil a range of functions: analytical, 
creative, cognitive, interpersonal, decision-based, operational, etc. (Rey-Valette 
et al., 2011). They could also help to develop collective action by facilitating 
participation and open innovation, collective decision-making and mediation.

PARTICIPATION AND OPEN INNOVATION
Digital can provide the means to implement open innovation and participation. 

Confronted with complex problems, analytical approaches (in the lab) and 
participatory approaches (with stakeholders from a wide range of backgrounds) 
must be devised jointly – digital technology having the capacity to bridge the gap 
between the two (facilitating negotiation through modelling and visualisation). 

To encourage farmers to engage in the agroecological transition, a gradual 
approach is the preferred option; the capacity to bring about change collectively 
will be necessary. It is anticipated that there will be new digital tools available 
for participatory strategies: support models, digital gamification, digital tools for 
analysing participatory sessions (video and audio processing for identifying and 
labelling participants and points of view, etc.).

Open innovation also generates additional research needs, involving mana-
gement sciences, social sciences and law: on types of collaborations and sources 
of information in open innovation assisted by digital technology, on economic 
models, on managing tacit knowledge, etc. (Enkel et al., 2020). Evaluating individual 
creative contributions in open innovation processes where intellectual protection 
will come into play, also known as “the paradox of openness” (Arora et al., 2016), 
raises questions from the perspective of law and economics. Finally, there is 
the issue of the way in which learning networks are organised so as to facilitate 
innovation in digital agriculture (Klerkx et al., 2019).

COLLECTIVE DECISION-MAKING
This type of decision-making is based on three different processes: delibera-

tion, negotiation and voting. When it comes to deliberation (Besnard and Hunter, 
2008), by allowing arguments to be studied in a logical and automatic way, digital 
technology could help to ensure deliberations are rational, while correcting any 
erroneous conclusions. With regard to negotiation (Kilgour and Eden, 2010), it is 
argued that a more standardised approach aimed at reaching a fair compromise 
would lead to engagement and satisfaction on the part of stakeholders and, thus, 
to sustainable decisions. Lastly, on the subject of voting itself, digital technology 
could be used to characterise these principles in order to arrive at relevant, desi-
rable decisions, by taking different expressed preferences into account, for example 
(Brandt et al., 2016).

6_Challenges for the future
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Tools must be easy to use, complementing other modes of collective decision- 
making and deliberation, and be capable of being seamlessly integrated into 
individuals’ daily routines (particularly when strategic decisions are being taken) in 
order to collect their arguments and preferences, for instance. As a consequence, 
the visualisation of data and decisions is vitally important.

MEDIATION 
Digital is reshaping boundary objects (Trompette and Vinck, 2009) – through 

which social groups of diverse interests, practices and codes are able to enter into 
dialogue and reach a mutual understanding – and intermediary objects (Vinck, 
1999), which retain a trace of the different stages involved in the collective design 
of a project or system, helping to boost acceptance and reuse. In Africa and the 
Global South, the use of commons such as land (agropastoralism, forestry) or 
water (irrigation) remains widespread. In this context, digital technology could 
also be employed to reshape management methods. Ongoing experiments with 
collective learning, living labs and joint, participatory management in places such 
as West and North Africa could be analysed and replicated.

     �Helping farmers to manage their 
technical journey

Three levers could be applied in tackling the obstacles identified in 4.2 with 
a view towards the scaling up of agroecology:

	• systems for monitoring animals, plants and their environment;
	• decision-support tools;
	• robotics.

 Acquisition and diagnostic systems 

The challenge here lies having access in farm to accurate, reliable data at a 
low cost and with a low environmental impact, providing farmers with rapid, 
easy-to-understand information about the status of their systems (animals, 
plants, harvests, etc.), enabling the early detection of malfunctions and assisting 
them with the decision-making process. Mass, comprehensive capture of data 
could also help to promote large-scale phenotyping on farms, the goal being to 
develop new knowledge in the field of agroecology. For livestock breeding, we can 
add constraints linked to measurement and transmission, ethical questions and 
a recognised need for unconventional forms of livestock breeding. In the context 

6.2
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of agroecology, one key issue is detecting malfunctions, with the compromise of 
“coverage” (the area covered by the detection system) versus specificity. Specific 
measurements (e.g. detecting a virus or bacteria) are complex due to the need 
to establish contact, the cost, energy supply and the issue of false alarms in 
livestock breeding (Dominiak and Kristensen, 2017). Research must be inclusive, 
geared towards “moderate levels of instrumentation” and devices accessible to 
all farmers (Bergez et al., 2019; Dumont et al., 2018). 

Research on acquisition systems, sensors and IoT, data management systems 
and associated digital models linked to farmers’ core business and consistent 
with their strategies could focus on:

	• �creating new sensors while respecting constraints typical of agriculture 
(frugality, cost, energy use, etc.). It will be necessary to seek compromises 
between the autonomy of the sensor, its environmental impact, its spatial 
and temporal resolution weighed against specificity, measurement quality, 
durability, suitability with regard to the object under study and to the 
measured environment simplicity of use and maintenance, the last two 
factors being essential for solution acceptance. With the same goal of 
simplifying human-computer interfaces, research could be devoted to 
the development of audio devices enabling farmers to input information 
(e.g. electronic crop registers): voice recognition, ontology alignment, 
etc. Finally, in order to improve understanding of these agroecological 
systems, it is becoming increasingly clear that we must take into account 
not only the physical parameters of an environment, but also its biological 
parameters (animal/soil microbiota), which would generate needs in terms 
of omics methods.  
	• �Optimising the mode of data transfer so that data is transferred automatically 
to processing centres, practically eliminating co (Wolfert et al., 2017), a 
major factor for large-scale phenotyping on farms; this raises research 
questions linked to power supplies for sensors, sensor networks (e.g. 
swarm intelligence), etc. 
	• �The desire to limit the number of sensors (in line with frugality) and to 
make it easier to measure certain parameters in a non-invasive way also 
calls for research into smart sensors, i.e. combinations of data from “simple” 
sensors for estimating these complex parameters through appropriate data 
processing (e.g. machine learning). The impact of these developments on 
the quality and uncertainty of information has still to be assessed.

6_Challenges for the future
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Once collected, information can be used for diagnostic purposes, for charac-
terising the state of agricultural systems and detecting any malfunctions that 
might require a response. Research could explore the building of diagnostic mo-
dels. Although this issue is not specific to agriculture and affects other sectors as 
well, research must incorporate knowledge of the domain (agriculture) in order 
to address the following priorities: 

	• �selecting which indicators to integrate, factoring in the natural variability of 
indicators, the propagation of uncertainty from these indicators, sensitivity 
and specificity adapted to use, adapting to local conditions (farm type and 
location, risk acceptance, agricultural practices, etc.); 
	• �fusion of big data with point data from varied sources, specific processing 
(SVM, deep learning), data sharing (individual or collective); 
	• �the hybridisation of data-driven approaches developed in artificial intelligence, 
based on big data, with modelling approaches which are more concept-driven 
but less suited to real-time data (Ellis et al., 2020). This will require research 
into the explainability of data-driven approaches, in addition to research on 
knowledge-based systems (ontologies).

In a general sense, it is to be hoped that these developments linked to 
acquisition, communication and processing tools can be made in an integrated 
and scalable way in order for the system as a whole to be capable of adapting 
dynamically to each crop or livestock profile, size of farm or agricultural strategy, 
which all throw up a real scientific and methodological challenge.   

 The challenges posed by robotisation and the digital transformation  
  of agricultural labour 

Digital tools are transforming agricultural labour. How can these be directed 
in a positive way so that the labour of farmers and agricultural employees is made 
less arduous and is better respected? Robotics could provide a way of shifting 
human labour to tasks with higher added value, but there are still a range of 
scientific and technological obstacles to overcome in the following areas:

SCENE PERCEPTION AND INTERPRETATION IN DYNAMIC ENVIRONMENTS
Improvements will need to be made in scene perception and interpretation in 

order to boost detection capacity (fruit, leaves, diseases, etc.). Deep learning and, 
in particular, machine learning will open up avenues, especially given that robots 
will be equipped with sensors and will therefore generate data. One alternative 
is to utilise human expertise in perception, which raises questions in relation to 
human-robot cooperation. Finally, it must be possible to explain and interpret 
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decisions taken by robots, and robots must be able to refer to experts for difficult 
detection or decision. This will involve determining confidence criteria for decisions 
and clarifying decision-making rules taken from learning, an open theme.

ADVANCED APPROACHES TO DECISION-MAKING
Robots are currently limited to one single operating mode. For complex 

tasks, shifts between command modes are sequential and planned in advance. 
It is anticipated that significant breakthroughs will be made in the realm of 
situation and scene recognition (the robot’s dynamic, its operating environment, 
agroenvironmental constraints, etc.), borrowing from artificial intelligence (Hill 
et al., 2019) for the purposes of adapting features. These problems go beyond the 
boundaries of autonomous navigation, and are also applicable to active tools so 
that they work with precision.

DESIGNING NEW ACTIVE TOOLS
Innovation in the field of agricultural robotics is currently focused on auto-

nomous navigation; tools worn are either passive or controlled independently 
(Wu et al., 2019). For greater repeatability and enhanced execution speed, active 
tools capable of being synchronised with mobile carriers are expected. In order 
to achieve this, research will need to be carried out on mobile handling and 
coordination with a moving carrier.

HUMAN-MACHINE INTERACTION AND SHARED AUTONOMY
In addition to issues surrounding perception or communication interfaces, 

human-machine interaction also raises questions on autonomy and collaboration: 
when and how should control be given back to a remote operator? How can 
robots cooperate with humans? In agriculture cobotics is starting to emerge 
commercially, with assistance robots (Laneurit et al., 2016), people-carrying robots 
and, to a lesser extent, exoskeletons – particularly passive exoskeletons – aimed at 
facilitating the lifting of heavy loads. With more complex levels of collaboration, 
it will be necessary to interpret human behaviour in order to adapt the actions 
of robots. Such an approach will help to popularise robots, which will still not 
replace humans, just as we must ensure that these devices operate safely. 

OPERATIONAL SAFETY
This is a crucial aspect for autonomous machinery operating in open 

environments. Scientific, technological and legislative progress will need to be 
made, drawing on driverless vehicles but factoring in difficulties linked to natural 
environments: (i) maintaining precision in terms of positioning (avoiding obstacles 
or not crushing crops), (ii) navigating within a pre-determined space, (iii) guarding 
against the risk of collision, or loss of stability or controllability. Infrastructure 

6_Challenges for the future



122

and protocols will be needed to validate operational safety and other types of 
performance (technical, environmental, etc.).

ADAPTING TO NEW PRODUCTION SYSTEMS
Robots must be designed with frugality and inclusion in mind: the choice of 

materials and components (minimising the use of rare-earth elements), limited 
energy requirements, reduced maintenance, repairability, the scalability of robots 
and their capacity to be updated. Similarly, robotics must provide solutions for 
all types of agriculture, with levels of sophistication and autonomy adapted to 
production systems. New crop systems, with a mix of species and the possible 
introduction of trees (agroforestry), will present problems for navigation.

There are also issues relating to the humanities in terms of how digital technology 
and robotics are transforming labour, on the loss of autonomy (deskilling) as a result 
of the use of machinery to replace humans and the rationale of practitioners. In 
order to avoid these risks, one of the challenges will be to incorporate – from the 
design phase onwards – the conditions for use, impact on the work and satisfaction 
of farmers (Hansen and Straete, 2020; Vik et al., 2019) and other categories of 
workers (employees, associates, sub-contractors, etc.).

 Modelling to incorporate systemic effects and build practical,  
 usable decision-support tools 

Challenges for research involve a number of aspects linked to the building of 
models and, in particular: representing and understanding interactions; including 
expert knowledge; building practical, integrated models for farmers; and dealing 
with uncertainty. Details of these can be found below.

REPRESENTING THESE NEW SOCIO-AGROECOLOGICAL SYSTEMS  
This is a first challenge in that agroecological systems are much more far-

reaching (incorporating value chains) and much more complex (based on 
interactions) than is the case with conventional agriculture. Difficulties with 
modelling are linked to selecting which characteristics and parameters to include 
(determined by measurement capacity), natural variability in terms of how these 
characteristics are expressed to the other factors inherent to plants or animals, 
environments, production or breeding systems (factoring in other individuals 
from their group), the equipment used and the agricultural strategy employed. 

Data-driven approaches (based on statistics, artificial intelligence, etc.) could 
be combined with concept-driven approaches (biological, economic or social 
models based on known mechanisms). Consideration may even be given to 
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creating “digital twins”, integrating models developed for sub-systems, in order 
to test scenarios at a system level (e.g. climate change, local supply on a mass 
scale, etc.). However, this integration will bring with it alignment difficulties77  
when there is no guarantee of concept correspondence between sub-models or 
between digital twins and the system being studied.

THE LEVEL OF INTEGRATION FOR EXPERT KNOWLEDGE
This second challenge to overcome in the building of decision-support tools 

(description, prediction, prescription, see 4.2) is of interest to the humanities: will it 
be necessary to go as far as prescription, or is observation (or possibly a diagnostic) 
sufficient, leaving the decision (prescription) up to farmers for precision livestock 
farming, as suggested by Ingrand (2018)? With regard to risk management, other 
formalisms could be actionable, such as the theory of viability (Aubin, 1991), which 
in principle is compatible, but which poses problems for researchers owing to 
the fact that models must provide a framework for small (<10) dynamic systems 
which are both controlled and constrained (Brias, 2016). This opens up research 
questions: what should be done if the model is not dynamic and constrained 
(compartmentalised models, multi-agent systems), or is even unknown? How can 
weak signals be utilised in time series (tipping points)? How can a compromise 
between complexity and control be reached (Anderies et al., 2019)?, etc. 

BUILDING PRACTICAL DECISION-SUPPORT SYSTEMS FOR FARMERS
The issue of practicality is central to the design brief, and there are a number 

of key points that any future research must take into consideration:

	• �the user interface: both for visualising inferred outputs, which are essential 
to effective decision-making, particularly in the context of multi-criteria 
optimisation (Lepenioti et al., 2020) or in the context of collective approaches 
(cf. part 6.2), but also for gathering data and identifying strategic objectives 
or preferences among farmers and incorporating these into decision models: 
visualisation of compromises, gamification (e.g. the serious digital game C-Real 
Game). It could be worthwhile to explore human-machine interfaces based 
on oral communication in order to make it easier to input and reproduce 
data and information in situations where farmers must handle… 
	• �the “personalisation” of inferred information i.e. adapting models to individual 
farms or farmers in order to avoid one-size-fits-all prescriptions, to be in 
alignment with farmers’ strategies and factor in their objectives (turnover, 
revenue, operating modes, etc.). Current prescription models are taken from 
“broad spectrum” knowledge models from experts in the field; how can it be 

77. Alignment involves indicating that a concept outlined in one ontology is semantically identical to another 
concept outlined in a different ontology, even if the two concepts have different names.
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made so that only – or primarily – data collected on individual farms is used, 
the goal being to infer prescriptions which are more compatible with farms 
and farmers? This obstacle has raised questions relating to the integration of 
knowledge from farmers in order to “personalise” inferred information and to 
increase its relevance in relation to their farm, similar to personalised medicine.
	• �the capacity to create scalable model capable of being adapted to environments 
which are liable to change as a result of both internal factors (strategy) and 
external factors (environmental, regulation, economic, etc.). This also raises 
questions linked to updating models (what is known as ‘concept drift’);
	• �the security of the recommendations made, i.e. the guarantee that a 
recommendation will not lead to a worsening of the situation, particularly 
in relation to automatic control. This problem is down to the stacking of 
models and the propagation of uncertainty (Trnka et al., 2007), as well as the 
characteristics of the actuator. The latter must be made part of the model 
in order for relevant decisions to be taken (see Tisseyre and McBratney’s 
opportunity index, 2008). 

UNCERTAINTY AND ITS PROPAGATION
Uncertainty is mentioned in 76% of articles on modelling (Lepenioti et al., 

2020): how can it be reduced, how can it be characterised (epistemic, ontological, 
random) and how can it be represented (Caquet et al., 2020; Crespo et al., 2010; 
Groot et al., 2012)? How can the issue of incomplete and noisy data and the 
subjective nature of human knowledge be addressed, particularly in the context of 
prescription (Lepenioti et al., 2020)? How can a compromise be reached between 
overly complex, unmanageable modelling and modelling which is simplistic and not 
sufficiently relevant (Caquet et al., 2020)? Exploring different ways of simplifying 
models would certainly be useful (stochastic models, mechanistic-stochastic 
models, metamodels, etc.).

Looking at the Global South in particular, decision-support systems must be 
designed in such a way as to incorporate the characteristics of agriculture in these 
countries; these must be multifunctional, with a prevalence for spatial-temporal 
reasoning and high levels of uncertainty. Decision-support systems and associated 
information systems must prioritise: (i) introducing or continuing agroecological 
practices and collective learning (collecting and exchanging data using digital 
technology); (ii) improving the management of resources (water, organic materials, 
etc.), from individual plots to whole regions, and harvests (dates, quantities), (iii) 
building new knowledge based on data and expertise in the context of rare data, 
but also emerging big data (see 6.5). 
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     �Transforming relationships between 
stakeholders within sectors 

Balancing out sectors to better integrate farmers and consumers will be 
vital in order to keep family farming attractive and to meet the expectations of 
consumers with regard to food. In response to these challenges, three key points 
have been especially identified, both upstream and downstream:

	• service: advice, insurance;
	• traceability;
	• platformisation78 and the reconfiguration of distribution networks.

 Service: advice and insurance 

Regarding advice, each of the obstacles identified in chapter 4 (access to 
digital, the individualisation of decision-making and maintaining decision-making 
autonomy, the imbalance between upstream and downstream) open up avenues 
for research on advice and digitalisation in both digital science and the humanities, 
with three primary areas of focus:  

	• �developing decision-support tools capable of integrating the specific 
features of individual farms (pedoclimate, the agronomic techniques 
employed, agricultural equipment) and the preferences of farmers. In 
addition to the points discussed in 6.2, the development of these tools could 
also draw on a deeper understanding – based on agronomic, sociological, 
managerial and ergonomic analysis – of the role of advisors and the bonds 
of trust they form with farmers in the usage profiles of digital solutions;
	• �continuing the economic analysis of the modes of decision-making 
employed by farmers and the dynamics for the adoption of digital 
innovations in a context impacted as much by the diversification of how 
farmers seek out information as by the fragmentation of services as a 
result of the privatisation of advice. Research could also be conducted to 
identify sustainable economic models for digital advice;
	• �institutional analysis of the governance of the digitalisation of agriculture, 
taking us back to the issue of transparency regarding the use of data, 
the regulation of power relationships and advice as a key factor in the 
digitalisation process.

78. Platformisation is a business model in which organisations employ the use of a web platform in order  
to act as an intermediary between consumers, as opposed to a supplier of goods and services. To find out more: 
https://www.decideo.fr/Entreprise-3-0%C2%A0-vers-une-ineluctable-%C2%A0plateformisation%C2%A0- 
du-Business-de-l-IT_a9280.html

6.3
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On the subject of insurance (section 4.2), technological breakthroughs will still 
need to be made in order to reduce the baseline risk for index-based insurance; 
this could draw on new data sources (satellites, connected stations, etc.) or 
suitable types of processing (De Leeuw et al., 2014; Ghahari et al., 2019). Finally, 
usage-based insurance – which has emerged in the transport sector (Husnjak 
et al., 2015) – is still unknown in agriculture, but it could be a useful avenue for 
exploration in the context of connected agriculture. Could this usage-based 
insurance assist with the adoption of agroecological practices – more com-
plex to implement given the need for greater monitoring, but more resilient in 
the event of a health or weather disaster – by guaranteeing revenue, provided 
that crops or herds have been correctly monitored and recommendations from  
decision-support tools applied? A multidisciplinary approach must be taken when 
addressing these questions.

 Traceability, full supply chain transparency, data life-cycle  

As shown in section 4.3, in the current context, the traceability of flows and 
products in agriculture is crucial in the interests of establishing trust between 
farmers and consumers. There is a growing interest in the blockchain, for example, 
for sharing and distributing details on a product’s entire life while also limiting 
fraud. But there remain a number of challenges to overcome in relation to data 
management at a technical and institutional level, particularly with regard to the 
overall traceability of practices and products.  

THE TECHNICAL CHALLENGES OF THE BLOCKCHAIN
How can current blockchains, which were designed for banking information, 

be adapted to this new type of data, linked to flows of products which are often 
perishable, in order to monitor it and archive it efficiently without violating the 
basic principles of storing data in a blockchain? How can the flow of information 
which characterises traceability in blockchains be unquestionably linked to the 
flow of products? How can the costs of identification systems be lowered and 
who should cover these costs, which benefit everyone along the chain? How can 
data be protected within an ecosystem with a growing number of data sources?79 
Similarly, as explored in chapter 3, public blockchains use up a lot of energy – 
in order to be unquestionable, the validation of information is open to a huge 
number of participants “in virtual competition with each other”, known as ‘miners’, 
resulting in a huge number of simultaneous calculations. Preference may be given 
to a private, less energy-intensive blockchain (based on a restricted number of  
 
79. White paper published by the US National Institute of Standards and Technology, outlining security  
problems affecting the Internet of Things (IoT), in October 2018 (https://csrc.nist.gov/CSRC/media/Publications/
white-paper/2018/10/17/iot-trust-concerns/draft/documents/iot-trust-concerns-draft.pdf )
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authorised participants) that is also better suited to use in agriculture. However, 
this raises the issue of the governance of blockchains.  

THE STORAGE OF DATA FROM THE AGRICULTURE AND FOOD CHAIN
This data can be said to be industrial in that it relates to agricultural production, 

but also to upstream and downstream industries. Should it be stored in specific 
locations or in a distributed manner? How can data sovereignty be ensured? 
Should certain operators be avoided in light of the Cloud Act?80 

DATA INTEGRATION
This is an important aspect when it comes to facilitating subsequent analy-

sis. Owing to the significant increase in the volume of data, the need to verify 
its quality and the value of the information, systems capable of enabling access 
by relevant and reliable information will become value sources. This will involve 
verifying company information systems – such as ERP (Enterprise Resource 
Planning) and CRM (Customer Relationship Management) – and engaging them 
in dialogue with data generated by connected objects managed through the 
Internet of Things (IoT). It will also involve evaluating and recognising the value 
created by each individual component of the data production and processing 
chain, exploring the following questions: what ways are there of getting more 
out of data in value chains, particularly vis-a-vis consumers? How can these raise 
awareness of virtuous transitions within agriculture among consumers?

BLOCKCHAIN GOVERNANCE
The challenge here lies in designing a fair and secure system involving all 

stakeholders in an equitable way, without any individual stakeholder imposing its 
vision on others or taking control of data usage. This raises a number of questions: 
how should the data that is generated be shared? What must be put in place in 
terms of data governance? To what extent will accessibility to information impact 
the improvement of supply chain governance (Gardner et al., 2019) and power 
shifts in value chains? What impact will digital technology have on trustworthy 
relationships and the ways in which value is shared within the sector (Jakku et 
al., 2019)? How can we prevent the value that is created from being collected 
exclusively by digital giants (ANRT, 2018)? Is there a risk that digital technology 
will exacerbate existing power imbalances (Bronson and Knezevic, 2016; Carolan, 
2017, 2018; Wolf and Buttel, 1996).  

80. The “Clarifying Lawful Overseas Use of Data Act” (“CLOUD Act” 162(*)) was passed by the US Congress 
 in March 2018: Its primary aim is to reaffirm the right of US authorities to demand that technical intermedia-
ries subject to their jurisdiction share all data stored, even data stored overseas. Independently, it also provides 
for specific, reciprocal bilateral agreements with the United States. (https://www.senat.fr/rap/r19-007-1/r19-
007-13.html)
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 Platformisation and reconfiguration of channels  

Platforms, new virtual meeting places, are helping to change the economic 
model within agriculture, facilitating dialogue and collective dynamics. Automatic 
data input in agriculture, hyperconnectivity, the Internet of Things and automation 
produce real-time information for optimising the running of the value chain, either 
individually or as a whole. This growing computerisation has led to increased 
agility capacities on the part of distribution and processing channels. It will be 
necessary to introduce agile planning for agricultural and food production in 
order to meet the growing need for local supply in towns and cities and contract 
catering. In the interests of promoting family agriculture for towns and cities 
and contract catering, major issues linked to production planning, coordination 
between different levels of the supply chain and logistics will need to be overcome 
in order to ensure everyone’s expectations are met and to be resilient to crises 
(as illustrated by the Covid-19 pandemic). These three points are explored below. 

In agriculture production planning is a reality for farmers contracted to 
agribusiness industries, particularly for frozen, tinned or ready-to-eat vegetables 
(Ahumada et al., 2012; Li et al., 2015). The challenge now lies in production 
planning for fresh products in order to guarantee supplies for contract catering, 
incorporating uncertainties (weather, health, social, etc.) and to factor in demand 
(Balaji Prabhu and Dakshayini, 2020).  

One solution to the issue of coordination is the creation of “food hubs”, 
innovative commercial models which bring together small producers in order to 
meet wholesale demand (Berti and Mulligan, 2016). The most integrated “food 
hubs” are intermediary organisations which use the internet for commercial 
transactions and which pool together, distribute and market food products from 
the source (small local and regional producers) to customers (individual consumers 
or wholesalers). These hubs must have access to production and distribution chain 
models featuring realistic characteristics, including soft information, logistical 
integration, risk modelling, the regulatory environment, and the quality and safety 
of products. Stochastic modelling could be useful in this context (Ahumada and 
Villalobos, 2009).

In order to build urban logistics distribution networks for suburban production 
with shorter commercial channels, it will be necessary to improve inventory 
management and distribution planning (particularly for cold products) in order 
to reduce food waste and the resulting carbon footprint. Little research has gone 
into planning applied to food supply chains compared to the industry. In particular, 
there is a clear lack of adequate models for planning operational decisions for the 
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production, harvesting and distribution of fresh agricultural products (Ahumada 
and Villalobos, 2009). The environmental dimension will need to be taken into 
consideration (Melkonyan et al., 2020) 

In the Global South, challenges linked to improving supply in local distribution 
channels are even more difficult: this will involve reducing post-harvest losses 
through organisational support and improved logistics management (channel 
modelling and optimisation, cold chain logistics, etc.). For longer channels, it is 
anticipated that frugal, secure traceability systems will be developed for national 
and international chains.

Finally, there is also the possibility of a move towards personalised food 
production. Svetlin et al. (2016) have proposed “online” and individualised co-design 
of products through linguistic analysis of consumer preferences and translation 
into formulation parameters (applied to an orange drink). This type of approach 
could be employed with more complex food items produced in accordance with 
demand, restrictions, budgets and individual needs, and delivered ready-made 
to people’s homes (Académie des technologies, 2021). This would also make it 
easier to connect to personalised health monitoring applications.

     �Creating and sharing data and knowledge  
Data and knowledge are central to digital technology helping to promote 

agroecology: data feeds into knowledge and knowledge feeds into agroecology. 
This information capital has brought about new technological, regulatory, orga-
nisational and institutional challenges. These challenges relate to the origin, the 
quality (crowdsourcing) and the governance of data, but also to the formalisation 
and sharing of knowledge, challenges which will require a response in order to build 
an ethical digital agriculture.  

PARTICIPATORY DATA (CROWDSOURCING) 
With the development of connectivity and acquisition systems (smartphones, 

precision agriculture, connected objects, etc.), the collection of data by operators 
(farmers, advisors, etc.) or laypersons (citizens) has developed, adding to more 
conventional methods for the gathering of experimental data by scientists. There 
are technical challenges relating to participatory data collection for environmental 
documentation or research purposes (4.4): what infrastructure is needed for 
managing and exchanging this participatory data? How can the quality of data 
collected through crowdsourcing be ensured? How can the data that is produced 
be traced in the interests of the fair sharing of intellectual property? There are 
also questions of interest to the humanities and economics: what has to be done 

6.4
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to encourage farmers to share their data and information and to build trust-
based relationships with their advisory and training environments (Sutherland 
et al., 2013; Wiseman et al., 2019)? How can value be attributed to the data that is 
produced? What impact will this new role of data collector have on the evolution 
of the job of being a farmer?  

Subcellular and weekly mapping of soil moisture by remote sensing based on Sentinel 1  
and 2 images. © Theia et INRAE.

GOVERNANCE AND THE SHARING OF DATA AND KNOWLEDGE

When talking about regions or sectors, we have shown that data is increasingly 
coming from various actors (multisource data). Given that data is generated by 
separate parties through different systems and is potentially hosted across multiple 
sites, it will be necessary to determine what the data usage rights are; needs can 
be contradictory from the point of view of data sharing and data protection 
(collaborating while remaining competitive). What modes of governance should 
be employed, in a context in which digital firms and upstream stakeholders are 
investing heavily in the management of data on agricultural risks and in which 
agricultural innovation systems are being digitalised (Fielke et al., 2019)? Within 
chains, an understanding must be reached as to the role played by information in 
the emergence of cooperation and compliance between stakeholders from different 
sectors and at different levels of global supply chains (Gardner et al., 2019). How 
can “ethical and secure” data circulation and state sovereignty be promoted81?
81. The French Academy of Technology has recommended “the introduction of a label for circulation solutions 
at a European level to prove that they are ethical and secure” and “emphasise the importance of developing 
solutions for bringing European clouds together”. See https://www.academie-technologies.fr/blog/categories/
publications-de-l-academie/posts/pour-une-circulation-vertueuse-des-donnees-numeriques



131

Clearly, these issues relating to data governance and the risk of power being 
seized by certain stakeholders within sectors (agricultural supplies, downstream) 
or by digital companies specialising in artificial intelligence and networks are even 
more acute in the Global South, where there are fewer regulations.

FORMALISATION AND SHARING OF KNOWLEDGE
Digital technology can help to promote the co-construction (participation) 

and exchange of knowledge, but there remain a number of challenges: how can 
knowledge be constructed in such a way as to incorporate the uses and knowledge 
of farmers (expertise gathering, contextualisation, etc.) in order to increase the 
likelihood of it being adopted? How can satisfactory governance be developed, 
not only in terms of data but also the knowledge generated through this data? 
How can the construction of digital commons be accelerated in order to establish 
knowledge and, in particular, to compare it and gather it together? This raises 
non-trivial questions regarding the gathering of expertise and ontologies. In 
particular, how to make ontologies built on different principles compatible 
(stackable, associable): different uses, different authors, different foundamental 
ontologies, etc.? Lastly, in the interests of frugality and efficiency, moving away 
from multiplying tools and getting the most out of existing resources, might 
it be beneficial to mobilise non-specialist social media sites and platforms for 
exchanging knowledge? If so, how can this be achieved? 

In the Global South, a first challenge is to use digital technology to rethink 
participatory approaches for collective learning and co-innovation – through 
“enhanced” interdisciplinarity (cognitive psychology, ergonomics, immersive 
serious games, design thinking and management science) – and evaluating their 
impact (Tesfaye et al., 2019). The goal will also be to facilitate communication with 
farmers and between farmers, in a context of low network coverage, plurality of 
languages and dialects, etc. (see 4.5).

Conclusion
In light of the risks and issues discussed above, the challenges identified in 

this chapter should be considered within a general overall context, enabling a 
multi-faceted framework to be built: 

	• �The need for a systemic vision for agriculture and digital technology. 
Systems and sectors in agriculture are complex systems, comprising multiple 
elements and stakeholders interacting with each other at different levels 
(farms, regions, sectors, etc.). Anticipated digital developments will need 
to be designed and evaluated in light of their direct impact at the level 

6_Challenges for the future
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at which they are applied, but also their indirect impact throughout the 
system and society as a whole, from a biotechnical, economic, social (e.g. 
labour), environmental (biodiversity, resources, etc.) and ethical perspective. 
Considering these indirect impacts and developing methods through 
which they can be evaluated will be essential in order to have the capacity 
to ensure that overall energy costs fall some way below the benefits of 
the development of a given type of technology, therefore without the 
risk of increasing complexity (see 5.4). Furthermore, developing systemic 
approaches will be essential in order to anticipate retroaction, such as the 
rebound effect82  that often occurs with digital technology. Research is faced 
with major methodological and conceptual difficulties, primarily relating 
to the systemic analysis of problems. Approaches must be fundamentally 
transdisciplinary; certain frameworks, such as the concept of “complex 
thought” introduced by Edgar Morin, could be useful here (Morin, 2014).

	• �Searching for frugality. This involves reducing energy expenses, consumption 
of other resources (both renewable and non-renewable) and pollution 
caused by the use of technology. It must incorporate all stages of the data 
chain, from collection and gathering to reproducing and decision-making. 
The development of digital solutions must take costs into consideration, 
whether this is the cost of materials (e.g. components used, size, number, 
particularly for sensors, robotics, etc.), of the data produced (type, quantity, 
storage, etc.) or of the processing power required in order to be economic 
with regard to natural resources (water, minerals, etc.) and energy. This 
analysis must factor in the entire life cycle of the materials used (resource 
extraction, manufacturing, transport, use, end-of-life). Although digital 
calls for a reduction in the use of agricultural inputs and resources (such 
as water, for example), its own environmental footprint must be taken 
into consideration when calculating the overall environmental footprint of 
any new agricultural practice. This will also mean taking a sober, cautious 
approach when developing and scaling up technological solutions, beforehand 
exploring organisational and sociopolitical solutions and alternatives which 
do not use up directly resources or emit pollution. 

	• �Searching for resilience. Optimising production and sectors from a cost 
point of view has guided technological innovations for decades, resulting 
in specialisation, reductions in stock levels, less room for manœuvre and  
less autonomy on the part of different stakeholders. This has resulted in a  
 

82. More efficient technology often leads to increased consumption of the resource that is sought  
to be preserved as a result of changes to consumer behaviour; see https://ecoinfo.cnrs.fr/2015/12/23/les-effets- 
rebond-du-numerique/
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reduction in the resilience of agricultural systems and sectors, i.e. their 
capacity to resist and to adapt to – at different levels – external crises 
such as weather events, scarcity of resources and supply chain breakdowns, 
and economic or health crises (Biggs et al., 2015). Digital solutions must 
endeavour to promote this resilience, by being the component within a 
complex system which is based on the seven principles of resilience outlined 
by Biggs et al. (2015),83 avoiding the trap of complexity, which results in 
technical or social dependency or security risks (data, operational, etc.), 
contributing factors to fragility. 

	• �Cybersecurity. Although not specific to agriculture, this remains a crucial 
topic in agriculture given the impact it has on food sovereignty. This is as 
much about maintaining continuity of food and agricultural production 
and distribution as it is about the security of information relating to 
agricultural production. Cybersecurity was covered in detail in a previous 
white paper (Inria, 2019). The European Union is behind the project GAIA-X 
(www.data-infrastructure.eu), the aim of which is to develop autonomous, 
sovereign data infrastructure which respects European standards, chiefly 
through a cloud computing network. Agriculture is one of the themes 
identified in GAIA-X.

Factoring in these aspects will help to promote responsibility, relevance and 
sharing in relation to digital technology, helping to make food systems sustainable, 
particularly in the context of the agroecological transition.84 Plotting this course 
will guide research, not just in terms of the choice of research topics – identified in 
this chapter – but also in terms of research positioning. We would recommend as 
a minimum drawing on approaches such as Responsible Research and Innovation 
or RRI (Stilgoe et al., 2013). Still rarely employed in digital agriculture, RRI is based 
on the following principles: anticipation (what will happen if...positive/negative 
impact), reflexivity (what does digital responsibility mean, what limits are there to 
our hypotheses/choices/knowledge, etc.), inclusion (with who and for who, what 
values) and responsiveness (how to adjust development trajectories in response 
to changing circumstances). It draws upon transdisciplinary research. Developing 
technology for digital agriculture within an RRI framework would help to meet  
 
 
83. https://whatisresilience.org/wp-content/uploads/2016/04/Applying_resilience_thinking_FR_aktiv.pdf
84. Responsibility: fairness, inclusivity, frugality (environmental impact), moving towards a much-needed  
diversification of cultures, practices and products in a context of reduced inputs, ensuring take-up by  
a wide-range of stakeholders. Relevance: meeting actual needs, delivering effective, acceptable solutions which 
preserve diversity and freedom. Sharing: where users are able to make use of their expertise and local data,  
give their opinion on outputs (assuming these are clear and well-communicated, with uncertainty estimated), 
and act on the parameters of tools while remaining within a plausible framework.

6_Challenges for the future
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the challenges identified while factoring in the global context and considerations  
on the need to integrate a systemic vision and issues such as frugality, security 
and resilience. 

.

The concept of RRI (Responsible Research and Innovation), introduced 
in the 2010s (Owen et al., 2012; Pellé et Reber, 2015; Stilgoe et al., 2013) 
is characterised by four key aspects, “anticipation, reflexivity, inclusion 
and responsiveness”, all of which must be implemented throughout the 
research and innovation process (Stilgoe et al., 2013). Research into RRI 
in agriculture remains limited and does not deal specifically with digital 
agriculture. However, since the end of the 2010s, Klerkx and Rose (2020) 
have noted a growing interest in RRI within agriculture 4.0 (Bronson, 2019; 
Eastwood et al., 2019; Rose and Chilvers, 2018)

Definition
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The evolution in agriculture and food systems will be one of the most important 
challenges over the coming years. As has been explained in this white paper, 
agriculture is already facing and will continue to face major challenges some 
of them are: food security and how to feed the world in difficult ecological and 
climate conditions (climate change, the erosion of biodiversity, loss of soil fertility, 
etc.); changes to agricultural models via the agroecological transition in order to 
limit environmental impact; diversification of production systems; a move towards 
greater regional integration; food sovereignty, etc. 

Challenges for research
The digital revolution is in progress in a number of fields and digital agriculture 

is both a component and a consequence of it. This white paper has outlined current 
research into digital technology aimed at tackling challenges facing agriculture. 
The topics covered were data at large (from acquisition to storage), modelling, 
learning and knowledge extraction, knowledge engineering for decision-support 
purposes or automation and robotics. We have also covered the range of oppor-
tunities presented by the use of digital technology in agriculture for improving 
production, promoting agroecology and adapting to external change. This range of 
opportunities also includes better integration within value chains and improving 
sharing, learning and understanding. But current research only deals with some of 
the opportunities that have been identified. Furthermore, although this technology 
has the potential to be empowering, the risks are also great, including missing out 
on the agroecological transition, widening inequality and power imbalances, loss of 
sovereignty and excessive complexity. With regard to these opportunities and risks 
and the current state of research, we have sought to show the main obstacles that 
will need to be overcome in order to scale up digital agriculture in a sustainable and 
responsible way, promoting agroecology, adapting to climate change and balancing 
out and reterritorialising value chains.

Among the many challenges outlined in this paper, there are a few which we 
believe to be particularly important and suitable for being tackled jointly by INRAE 
and Inria:

	• �In terms of data, what is the most relevant data to acquire at different levels 
(plants, animals, plots, herds, farms, regions, etc.)? How can this data be acquired 
and exchanged while minimising energy costs and guaranteeing access and 
privacy? Data heterogeneity is inherent to an increase in the number of different 
systems. It will be necessary to take advantage of this heterogeneity, which 
provides redundancy and complementarity both being, factors for improving 
measurement results.
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	• �When it comes to supporting farmers: what knowledge will need to be created? 
What is the best way of using and analysing data in order to discover this 
knowledge? And how can new knowledge be combined with existing knowledge? 
How can information be shared with farmers (visualisation)? How can they 
be assisted with decision-making through the use of diagnostic or decision-
support tools? What robots will need to be developed in order for agroecology 
to be scaled up? Stakeholders from the digital and agricultural spheres will 
need to work together to come up with these new solutions. 

	• �Uncertainty is inherent to processes in biology, the climate, meteorology, etc., 
particularly in agricultural production systems applying an agroecological 
approach. How can complexity be modelled by linking models together (e.g. 
digital twins) while on the propagation of uncertainty under control? How 
can complexity be incorporated into models and relayed in order to enable 
informed decision-making? Handling this uncertainty will require combined 
expertise from different observational disciplines (depending on the scale, 
this may be biology, physiology, agronomy, regional engineering, etc.), as well 
as from mathematics and computer science. 

	• �Participation has been shown to be an effective lever in the context of the 
agroecological transition and the transformation of food systems: data 
collection, mediation, governance, experience-sharing, etc. The aim will be to 
utilise digital technology for participatory processes: crowdsourcing; support 
models; mediation or boundary objects; sharing, managing and integrating 
(with other systems) data and knowledge.

	• �Traceability, transparency and, in a broader sense, product documentation, 
all along the production chain, are becoming key considerations for agri-food 
systems. Consideration must now be given as to what data should be “traced”, 
documented and shared (particularly in relation to perishable goods), and how 
to choose the right tools for storage and transmission (e.g. the blockchain).

	• �Cybersecurity is crucial to food sovereignty in terms of protecting agricultural 
production and the information produced as part of it or which is linked to it. 

Lastly, it should be borne in mind that there are a number of different agricul-
tural models and that there will be even greater diversity in the future (see the 
forecast from the JRC85 or from the CSIRO)86, which will result in the development 
of types of digital technology adapted to each model.

85. https://publications.jrc.ec.europa.eu/repository/bitstream/JRC122308/farmers_of_the_future_final_online.pdf
86. https://research.csiro.au/digiscape/digiscapes-social-dimensions-project-what-did-we-learn/

Conclusion



138

Recommendations
In conclusion to this paper, we have a number of recommendations to make 

for research which we feel to be important for the future of digital technology 
in agriculture. 

In light of the major challenges cited above which agriculture is currently 
facing and will face in the future, digital technology can be a major lever in 
enabling agriculture to meet these challenges by promoting the agroecological 
transition and the transition in food systems. However, as we have seen, digital 
technology also brings with it risks, both in environmental and human terms (the 
cost of resources, the dehumanisation of agriculture, widening inequality, etc.), 
which must be taken into consideration in future research. We recommend the 
following main principles: i) adopt a systemic vision by considering the system 
as a whole and the complexity of food and agriculture systems, ii) promote 
frugality so that the benefits of digital technology do not come at the expense of 
rising energy consumption, damaging the overall impact, iii) prioritise resilience, 
i.e. the capacity of digitally-aided agricultural systems to withstand crises and 
adapt to different types of changes (linked to the climate, the economy, health, 
working methods, etc.), iv) draw on the diversity of agricultural systems, using 
digital technology to support agriculture in all its forms. In this regard, we would 
recommend taking the approach of responsible research and innovation or RRI 
(see chapter 6). Finally, in the interests of taking a systemic vision and in light 
of the complexity of the possible topics for study, steps must be taken to avoid 
research becoming overly sector-specific in order to really get to grips with 
the issues raised (see Chapter 5). As a result, it will be important to really take 
an interdisciplinary and participatory approach to our research into the use of 
digital technology in agriculture and to emphasise the importance of this type 
of approach and research within our institutes.

Our aim is not to plot an exact course to follow, but given the broad panorama 
which we have sketched over the course of this paper, we believe that a number 
of key themes and principles have emerged which could inform decisions in the 
future. As stated at the beginning of this paper, we firmly believe that agriculture 
must evolve towards agroecology and sustainable food systems, and that digital 
technology has the capacity to be a powerful tool in this transition provided we 
are mindful of certain pitfalls. Our recommendations are based on this belief. 
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Recommendations

 Research topics 

Within the research topics mentioned above, one point which we feel to 
be most important is that agroecology will result in the need to produce large 
quantities of new knowledge. This knowledge will most likely be produced using 
digital technology: gathering data on a large scale but also monitoring new 
indicators (e.g. intra- and interspecies biodiversity, characterised by genomic 
data), managing these large quantities of data and extracting knowledge based 
on entirely new data at all levels (from microbiota to satellite imaging). There are 
a number of ways in which this research can be distinguished from non-specialist 
data science:  

1) the approaches employed must take local contexts into consideration, with 
a focus on factoring in existing knowledge and gathering and establishing the 
expert knowledge of farmers;

2) the production of this data (whether measured or simulated) is becoming 
a challenge, bringing with it questions linked to the quality of the data produced, 
pre-processing and sharing. The convergence of phenotype data – particularly 
in real environments – with genomic data should accelerate the creation of 
knowledge on processes within agroecology, selecting varieties or building new 
cultural routes in order to anticipate climate change. Another key point to consider 
will be digital tools for assisting farmers, advisors and other stakeholders at a 
sector or regional level. Firstly, this concerns decision-support tools, which will 
be the primary interface for implementing knowledge, particularly that discussed 
previously. Very much central to dialogue between humans and digital models, 
these tools will require specific research drawing on design science, visualisation 
and ergonomics in order to facilitate their adoption. Taking into consideration 
local specificities and technical choices made by operators / political decisions at 
a regional level will be essential in order to avoid a move towards homogeneity 
within agriculture. The approaches studied must be able to explain/justify any 
recommendations that are made in order to enable constructive dialogue with 
human participants. Meanwhile, new robotic assistance solutions will need to 
be invented in order to spare farmers having to carry out the most arduous or 
dangerous tasks. Aside from research questions linked to navigating in uncontrolled 
environments, safety and how tools and the robots carrying them interact with 
each other, we believe taking a participatory approach to designing these robot 
solutions to be a promising means of reducing tension between technology and 
ecology.
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A third focus for research in computing is motivated by the fact that processes 
within agroecology – in a broad sense – extend beyond farms into value chains 
and regions. In these areas, priority should be given to operational research on 
issues linked to planning (in time and space) for the use of resources (water, soil) 
and agricultural production (large-scale supply based on fragmented sources).  

Lastly, as is the case with all of the digital systems explored, cybersecurity is of 
vital importance. In the agricultural sphere this must take a number of forms. The 
aim will be to secure data itself, but also the material systems which produce it, 
the networks used to transport it and the tools which utilise it in order to ensure 
that none of these are hacked (data could be intercepted or false data introduced). 
One possible avenue to explore involves combining “traditional” security systems 
with new learning techniques specific to agricultural data in order to identify and 
isolate any malicious nodes and/or detect information leaks.

 Types of research 

We recommend taking the approach of responsible research and innovation 
or RRI (see Chapter 6). In order to fully grasp the complexity of the subject 
matter, steps must be taken to ensure that research is not overly sector-specific 
(see Chapter 5), which will involve taking a systemic view. As a result, it will be 
important to really take an interdisciplinary and participatory approach to our 
research into the use of digital technology in agriculture and to emphasise the 
importance of this type of approach and research within our institutes.

This systemic view will also assist us in addressing the issue of the environmental  
impact of digital solutions. There is a range of different ways of tackling the 
avenues for research outlined above, some of which will require the consumption 
of a significant amount of energy or rare resources. In order to avoid this pitfall, 
it is our recommendation that a frugal approach be taken: the benefits of digital 
technology must not come at the expense of rising energy consumption, damaging 
the overall impact. The best way of assessing this impact is to employ a systemic 
view, considering the system as a whole and the complexity of agriculture and 
food systems (as opposed to optimising just one indicator). 

We also feel it will be critical for any future research to place an emphasis on 
resilience, i.e. the capacity of digitally-aided agricultural systems to withstand 
crises and adapt to different types of changes (linked to the climate, the economy, 
health, working methods, etc.) Lastly, given that there are many different types of 
agriculture, it will be necessary to draw on the diversity of agricultural systems, 
using digital technology to support agriculture in all its forms.



141

 Social science 

We hope this paper has demonstrated that the use of digital technology in 
agriculture is not simply a question of technology. At all levels, existing or planned 
solutions are in line with human stakeholders, and can even provide a way of 
bringing different stakeholders together. Research in the humanities is therefore 
an integral part of research into the use of digital technology in agriculture. One 
first issue, which may not be new but which will become increasingly significant, 
is the link between humans and increasingly complex technological solutions: 
how can a harmonious and fulfilling relationship be built between these solutions 
and the humans that use them? How can the risk of deskilling be avoided? One 
avenue that seems particularly promising is putting an emphasis on participatory 
approaches to design, identifying the best way of involving stakeholders within 
the sector at the earliest possible stage. These approaches go beyond designing 
tools: one key concern is to draw on digital technology in order to discover new 
ways for humans to work together. This will be particularly beneficial when it 
comes to improving the management of shared resources, where collective and 
individual interests can come into conflict with each other. 

 Public policies 

Finally, the “digital transition” in agriculture is bringing about changes that will 
need to be dealt with at a public policy level. The aspect which we feel to be most 
important is data governance. New technology has transformed farmers into data 
producers, either through the sensors which they use or manual entry on their 
part (participatory approaches). Urgent consideration must be given to the value 
of this data, as well as to copyright and privacy. This is a complicated issue: on one 
hand, sharing the vast quantities of data produced can benefit everyone, but on 
the other hand too much openness can make farms or regions less competitive. 
As things currently stand, part of this data is in the hands of private firms (e.g. 
providers of technology and services), which benefit from a global view without 
there necessarily being a great deal of reciprocity with regard to the agricultural 
sector. In order to avoid this pitfall, France’s National Digital Council recommends 
granting agricultural data the status of common good.  87  

Another key subject will be to work on better quantifying and analysing 
material flows at different regional levels so as to facilitate the introduction 
of alternative economic models falling within the bracket of bioeconomics or 
biophysical economics.  

87. https://cnnumerique.fr/tribune-agriculture
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 Inria-INRAE - an appropriate partnership for tackling this research 

In line with their own missions, bringing together our two institutes – Inria and 
INRAE – will be beneficial in tackling the subjects outlined in relation to digital 
agriculture, thanks to the complementarity of the approaches and skills they 
can draw upon: INRAE, with its culture of experimental tools and data gathering; 
skills in modelling biological systems, with panels of experts and extensive mo-
dels; and expertise in economics and social science, with a particular focus on 
agriculture and its stakeholders, regions and networks, enriched through contact 
with the profession and knowledge of needs; Inria, through its expertise in digital 
science and technology – mathematics and computer science –, particularly in 
modelling, simulation, artificial intelligence, data science, cybersecurity, networks 
and robotics, plus its culture, rooted simultaneously in research, technological 
development, transfer and innovation.

The two institutes have a long history of collaborating and interacting with each 
other (joint project-teams, jointly supervised PhDs, scientific days staged jointly, 
etc.), something which has intensified recently through flagship projects such 
as #DigitAg (see inset) and PEPR (Priority Equipment Programme for Research) 
“Agroecology and Digital Acceleration Strategy” SADEA, launched in 2021 and jointly 
led by the two institutes. These collaborations have proven highly rewarding for 
the researchers involved. Given the unprecedented challenges posed by the digital 
and agroecological transition in agriculture, this collaboration will surely only 
grow stronger. Together, and with their historic partners in agronomy (CIRAD, the 
grandes écoles of agronomy, IRD, CGIAR, etc.) and mathematics and computing 
(universities, CNRS, etc.), the two institutes clearly have the potential to address 
these challenges and to meet the high expectations of society with regard to 
agriculture. 
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#DigitAg, the Digital Agriculture Convergence Lab, led by INRAE, is one 
of ten French Convergence labs funded by the Investments for the Future 
Programme (€9.9m). Based in Montpellier and with branches in Toulouse, 
Rennes and Avignon, it brings together more than 550 individuals (2020 
figures) from 8 public and parapublic bodies and is supported by 8 AgTech 
companies. Launched in 2017 for an initial duration of eight years, its 
aim is to prepare for the harmonious development of digital technology 
in agriculture, both in France and in the Global South. For this, its work 
involves developing multi- and interdisciplinary research, with 60 or so 
PhDs jointly funded, around 20 or so labelled PhDs, 12 postdoc researchers 
and 150 master’s placements funded. A graduate school has been set up to 
create an inventory of educational resources for this sector and new courses 
have emerged (data science). Lastly, the institute is raising awareness of 
innovation among students through meetings with companies, courses 
on intellectual property, an IT development department for building web 
demos based on PhD results, and an observatory for the different uses of 
digital technology in agriculture. It is highly active internationally, with a 
particular focus on the Global South, a number of teams from INRAE and 
Inria working together.    

En savoir +En savoir +

Find out more
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Glossary
■  ANRT: French National Association  
for Research and Technology
■  AOC: Controlled Designation of Origin
■  CAP: Common Agricultural Policy
■  CATI: Automated Data Processing Centre
■  CITEPA: Technical Reference Centre for Air 
Pollution and Climate Change
■  DAS: Decision Aid System
■  DBMS: Database Management System
■  DGE: Senior Management
■  DSS: Decision Support System
■  ERP: Enterprise Resource Planning 
■  ETSI: European Telecommunications 
Standards Institute
■  FAO: Food and Agriculture Organization  
of the United Nations
■  FNSEA: French National Federation  
of Farmers’ Unions
■  GDPR: General Data Protection Regulation
■  GHG: Greenhouse Gas
■  GIS: Geographical Information Systems
■  GPS: Global Positioning System
■  HCI: Human-Computer Interaction
■  HLPE: High Level Panel of Experts (UN)
I■  CT: Information and Communication 
Technology
■  INRAE: French National Research Institute 
for Agriculture, Food, and Environment 
Inria: French national research institute  
for digital science and technology
■  IoT: Internet of Things
IPCC: Intergovernmental Panel on Climate 
Change
■  ITU: IT University of Copenhagen
■  JA: French Young Farmers’ Union
■  MIT: Massachusetts Institute of Technology
■  NGO: Non-Governmental Organisation
■  OECD: Organisation for Economic 
Cooperation and Development

■  OIE: World Organisation for Animal Health 
(formerly Office International des Epizooties)
■  OLAP: On Line Analytical Processing
■  ONF: French National Forestry Office
■  OWL: Web Ontology Language
■  PDO: Protected Designation of Origin
■  PEPR: Priority Equipment Programme  
for Research
■  PES: Payment for Ecosystem Services
■  PGS: Participatory Guarantee System
■  RDA: Research Data Alliance
■  RFID: Radio Frequency Identification
■  RRI: Responsible Research and Innovation
■  SADEA: Sustainable agricultural systems  
and agricultural equipment contributing  
to the ecological transition
■  SAREF: Smart Applications Reference 
ontology
■  UE: Experimental Unit
■  UMR: Mixed Research Unit
■  UMT: Mixed Technology Unit
■  UN: United Nations
■  UNESCO: United Nations Educational, 
Scientific and Cultural Organization
■  WEEE: Waste Electrical And Electronic 
Equipment
■  W3C: World Wide Web Consortium
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Inria project-teams  
https://www.inria.fr/en/list-of-project-teams 

INRAE research units 
https://annuaire.inrae.fr/accueil.action#ongletStructure 

■  UMR AGROECOLOGY : https://www6.dijon.inrae.fr/umragroecologie_eng/
■  UMR BAGAP : https://www6.rennes.inrae.fr/bagap_eng/
■  UMR BIOEPAR : https://www6.angers-nantes.inrae.fr/bioepar_eng/
■  UMR BOA : https://web.univ-tours.fr/umr-0083-biologie-des-oiseaux-et-aviculture-boa
■  UMR CBGP : https://www6.montpellier.inrae.fr/cbgp_eng/
■  UMR GENPHYSE : https://genphyse.toulouse.inra.fr
■  UMR MISTEA : https://www6.montpellier.inrae.fr/mistea_eng/
■  UMR MOSAR : https://www6.jouy.inrae.fr/mosar_eng/
■  UMR PEGASE : https://www6.rennes.inrae.fr/pegase_eng/
■  UMR SAS : https://www6.rennes.inrae.fr/umrsas_eng/
■  UMR SELMET : https://umr-selmet.cirad.fr
■  UMR SMART LERECO : https://www6.inrae.fr/umt-stratege/Partenaires/INRAE/UMR-1302-
SMART-LERECO
■  UMR Tetis : https://umr-tetis.fr/index.php/fr/
■  UMR TOXALIM : https://www6.toulouse.inrae.fr/toxalim_eng/
■  UMR UMRH : https://umrh-bioinfo.clermont.inrae.fr/Intranet/web/UMRH/en
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